Ashish Ranjan Karn commited on
Commit
dd849f5
·
1 Parent(s): a304836
Files changed (2) hide show
  1. README.md +2 -3
  2. app.py +4 -9
README.md CHANGED
@@ -16,7 +16,7 @@ Detect whether an image is AI-generated or real using state-of-the-art machine l
16
 
17
  ## Overview
18
 
19
- This Gradio app uses the [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector) model to classify images as either AI-generated or real. The model has been specifically trained to detect images generated by various AI systems including:
20
 
21
  - DALL-E
22
  - Midjourney
@@ -31,7 +31,6 @@ This Gradio app uses the [Organika/sdxl-detector](https://huggingface.co/Organik
31
 
32
  ## Model Information
33
 
34
- - **Model**: [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector)
35
  - **Task**: Image Classification (Binary: AI-generated vs Real)
36
  - **Framework**: Transformers + PyTorch
37
  - **Interface**: Gradio
@@ -46,7 +45,7 @@ This Gradio app uses the [Organika/sdxl-detector](https://huggingface.co/Organik
46
 
47
  ## Technical Details
48
 
49
- The app uses both the Transformers pipeline and direct model inference to provide robust classification results. The model outputs probabilities for each class, giving you confidence scores for the prediction.
50
 
51
  ## Development
52
 
 
16
 
17
  ## Overview
18
 
19
+ This Gradio app uses a specialized model to classify images as either AI-generated or real. The model has been specifically trained to detect images generated by various AI systems including:
20
 
21
  - DALL-E
22
  - Midjourney
 
31
 
32
  ## Model Information
33
 
 
34
  - **Task**: Image Classification (Binary: AI-generated vs Real)
35
  - **Framework**: Transformers + PyTorch
36
  - **Interface**: Gradio
 
45
 
46
  ## Technical Details
47
 
48
+ The app uses direct model inference to provide robust classification results. The model outputs probabilities for each class, giving you confidence scores for the prediction.
49
 
50
  ## Development
51
 
app.py CHANGED
@@ -1,11 +1,10 @@
1
  import gradio as gr
2
- from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
3
 
4
  # Load the model and processor
5
  print("Loading model...")
6
  processor = AutoImageProcessor.from_pretrained("Organika/sdxl-detector")
7
  model = AutoModelForImageClassification.from_pretrained("Organika/sdxl-detector")
8
- pipe = pipeline("image-classification", model="Organika/sdxl-detector")
9
  print("Model loaded successfully!")
10
 
11
  def detect_ai(image):
@@ -22,10 +21,7 @@ def detect_ai(image):
22
  return {}
23
 
24
  try:
25
- # Pipeline result
26
- pipe_out = pipe(image)
27
-
28
- # Direct model inference for more detailed results
29
  inputs = processor(images=image, return_tensors="pt")
30
  outputs = model(**inputs)
31
  logits = outputs.logits
@@ -51,7 +47,7 @@ demo = gr.Interface(
51
  outputs=gr.Label(num_top_classes=2, label="AI vs Real Probability"),
52
  title="🤖 AI‑Generated Image Detector",
53
  description="""
54
- Upload an image to detect whether it's AI-generated or real using the Organika/sdxl-detector model.
55
 
56
  This model can help identify images generated by AI systems like DALL-E, Midjourney, Stable Diffusion, and others.
57
 
@@ -62,8 +58,7 @@ demo = gr.Interface(
62
  """,
63
  article="""
64
  ### About the Model
65
- This detector uses the [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector) model
66
- to classify images as either AI-generated or real. The model has been trained to detect various AI-generated images
67
  with a focus on SDXL and similar diffusion models.
68
 
69
  ### Limitations
 
1
  import gradio as gr
2
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
3
 
4
  # Load the model and processor
5
  print("Loading model...")
6
  processor = AutoImageProcessor.from_pretrained("Organika/sdxl-detector")
7
  model = AutoModelForImageClassification.from_pretrained("Organika/sdxl-detector")
 
8
  print("Model loaded successfully!")
9
 
10
  def detect_ai(image):
 
21
  return {}
22
 
23
  try:
24
+ # Direct model inference
 
 
 
25
  inputs = processor(images=image, return_tensors="pt")
26
  outputs = model(**inputs)
27
  logits = outputs.logits
 
47
  outputs=gr.Label(num_top_classes=2, label="AI vs Real Probability"),
48
  title="🤖 AI‑Generated Image Detector",
49
  description="""
50
+ Upload an image to detect whether it's AI-generated or real.
51
 
52
  This model can help identify images generated by AI systems like DALL-E, Midjourney, Stable Diffusion, and others.
53
 
 
58
  """,
59
  article="""
60
  ### About the Model
61
+ The model has been trained to detect various AI-generated images
 
62
  with a focus on SDXL and similar diffusion models.
63
 
64
  ### Limitations