summarizer / app.py
arithescientist's picture
Update app.py
9b2fb3c
raw
history blame
1.09 kB
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
model_name = 'nlpaueb/legal-bert-base-uncased'
# The setup of huggingface.co
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
def get_response(input_text):
output_text= bert_legal_model(input_text, min_length = 8, ratio = 0.05)
return output_text
iface = gr.Interface(
get_response,
"text",
"text"
)
if __name__ == "__main__":
iface.launch(share=True)