File size: 23,083 Bytes
c4655e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
from rapidfuzz import fuzz

#######################################
# Debug Logging Function
#######################################
def debug_print(message):
    print(message)

#######################################
# Data Generation Functions
#######################################
def generate_case_data(num_records=5000):
    debug_print("Generating case data...")
    lob_list = np.random.choice(["Modern Life", "Xbox", "CAPS", "Devices", "Modern Work"], num_records)
    issue_types = np.random.choice(["Billing", "Technical", "Hacking", "Service", "Access"], num_records)
    advocates = np.random.choice(["Alice", "Bob", "Charlie", "Diana", "Eve"], num_records)
    
    start_date = pd.Timestamp("2021-01-01")
    end_date = pd.Timestamp("2023-12-31")
    days_range = (end_date - start_date).days

    # Generate random case dates over 3 years
    case_dates = start_date + pd.to_timedelta(np.random.randint(0, days_range, num_records), unit='D')
    
    # Simulated release dates per LOB (set in early 2022)
    lob_release_dates = {
        "Modern Life": pd.Timestamp("2022-01-01"),
        "Xbox": pd.Timestamp("2022-02-01"),
        "CAPS": pd.Timestamp("2022-03-01"),
        "Devices": pd.Timestamp("2022-04-01"),
        "Modern Work": pd.Timestamp("2022-05-01")
    }
    release_dates = np.array([lob_release_dates[lob] for lob in lob_list])
    pre_release = case_dates < release_dates

    CSAT = np.where(pre_release, np.random.normal(80, 5, num_records), np.random.normal(85, 5, num_records))
    days_to_close = np.where(pre_release, np.random.normal(5, 1, num_records), np.random.normal(4, 1, num_records))
    first_contact_resolution = np.where(pre_release, np.random.normal(70, 8, num_records), np.random.normal(75, 8, num_records))
    CPI = np.where(pre_release, np.random.normal(50, 5, num_records), np.random.normal(45, 5, num_records))
    
    # For the main case dataset, we do NOT include initiative utilization columns.
    debug_print("Case data generated.")
    return pd.DataFrame({
        "serial_number": np.arange(1, num_records + 1),
        "advocate": advocates,
        "LOB": lob_list,
        "issue_type": issue_types,
        "case_date": case_dates,
        "CSAT": CSAT,
        "days_to_close": days_to_close,
        "first_contact_resolution": first_contact_resolution,
        "CPI": CPI
    })

def generate_advocate_adoption_data():
    debug_print("Generating advocate adoption data...")
    advocates = ["Alice", "Bob", "Charlie", "Diana", "Eve"]
    # Ensure adoption dates fall roughly in mid-2022
    adoption_dates = {
        "Symbiosis_adoption_date": ["2022-06-05", "2022-06-10", "2022-06-08", "2022-06-12", "2022-06-07"],
        "Voice Translation_adoption_date": ["2022-06-03", "2022-06-07", "2022-06-05", "2022-06-09", "2022-06-04"],
        "NoteHero_adoption_date": ["2022-06-02", "2022-06-06", "2022-06-04", "2022-06-08", "2022-06-03"]
    }
    df = pd.DataFrame({
        "advocate": advocates,
        "Symbiosis_adoption_date": pd.to_datetime(adoption_dates["Symbiosis_adoption_date"]),
        "Voice Translation_adoption_date": pd.to_datetime(adoption_dates["Voice Translation_adoption_date"]),
        "NoteHero_adoption_date": pd.to_datetime(adoption_dates["NoteHero_adoption_date"])
    })
    # Convert to date objects
    for col in ["Symbiosis_adoption_date", "Voice Translation_adoption_date", "NoteHero_adoption_date"]:
        df[col] = df[col].dt.date
    debug_print("Advocate adoption data generated.")
    return df

def generate_utilization_data():
    debug_print("Generating initiative utilization data...")
    # Create a standalone DataFrame with serial numbers and binary flags for each initiative.
    df = global_case_data.copy()[["serial_number"]].copy()
    # For demonstration, we simulate 50% usage for each initiative.
    for initiative in ["Voice Translation_utilized", "Symbiosis_utilized", "NoteHero_utilized"]:
        df[initiative] = np.random.choice([0, 1], size=len(df), p=[0.5, 0.5])
    debug_print("Initiative utilization data generated.")
    return df

#######################################
# Global Data Setup
#######################################
global_case_data = generate_case_data(num_records=5000)
global_advocate_adoption = generate_advocate_adoption_data()
global_initiative_utilization = generate_utilization_data()
# Ensure that the utilization dataset only contains serial numbers that are in the main dataset.
valid_serials = set(global_case_data["serial_number"])
global_initiative_utilization = global_initiative_utilization[global_initiative_utilization["serial_number"].isin(valid_serials)]
debug_print("Global datasets generated.")

#######################################
# Helper Calculation Functions
#######################################
def calculate_throughput(df, start_date, end_date):
    df_filtered = df.loc[(df["case_date"] >= start_date) & (df["case_date"] <= end_date)]
    num_cases = len(df_filtered)
    num_days = (end_date - start_date).days or 1
    return num_cases / num_days if num_cases > 0 else 0

def calculate_throughput_per_advocate(df, start_date, end_date):
    df_filtered = df.loc[(df["case_date"] >= start_date) & (df["case_date"] <= end_date)]
    if df_filtered.empty:
        return None
    throughput = df_filtered.groupby(["LOB", "advocate"]).size() / (end_date - start_date).days
    return throughput

#######################################
# Analysis Functions
#######################################
def analyze_overall_impact(release_date_str, lob_filter, issue_filter, kpi, one_tailed):
    debug_print("Running Overall Impact Analysis...")
    try:
        # Parse release date as a date object (no .dt on a scalar)
        release_date = pd.to_datetime(release_date_str).date()
    except Exception as e:
        return f"Error parsing release date: {str(e)}", None

    df = global_case_data.copy()
    df["case_date"] = pd.to_datetime(df["case_date"]).dt.date

    if lob_filter != "All":
        df = df[df["LOB"] == lob_filter]
    if issue_filter != "All":
        df = df[df["issue_type"] == issue_filter]
    if df.empty:
        return "No data available for the selected filters.", None

    pre_data = df[df["case_date"] < release_date]
    post_data = df[df["case_date"] >= release_date]
    if pre_data.empty or post_data.empty:
        return "No data available for the selected date range.", None

    if kpi.lower() == "throughput":
        throughput_pre = calculate_throughput(pre_data, pre_data["case_date"].min(), pre_data["case_date"].max())
        throughput_post = calculate_throughput(post_data, post_data["case_date"].min(), post_data["case_date"].max())
        t_stat, p_value = stats.ttest_ind(np.array([throughput_pre]), np.array([throughput_post]), equal_var=False)
    else:
        pre_vals, post_vals = pre_data[kpi].values, post_data[kpi].values
        t_stat, p_value = stats.ttest_ind(pre_vals, post_vals, equal_var=False)
    if one_tailed:
        p_value = p_value / 2
        significance = "Significant" if p_value < 0.05 and t_stat > 0 else "Not Significant"
    else:
        significance = "Significant" if p_value < 0.05 else "Not Significant"

    analysis_text = f"""Overall Impact Analysis for KPI: {kpi}
Filters - LOB: {lob_filter}, Issue Type: {issue_filter}
Global Release Date: {release_date}

T-Test: T-Statistic = {t_stat:.3f}, P-Value = {p_value:.3f} ({significance})
"""
    # Here you could also add additional aggregated results if needed.
    fig, ax = plt.subplots(figsize=(6, 4))
    if kpi.lower() == "throughput":
        # For throughput, show a simple bar graph with aggregated throughput (for demonstration)
        ax.bar(["Pre", "Post"], [throughput_pre, throughput_post], color=["blue", "green"])
        ax.set_ylabel("Throughput (cases/day)")
    else:
        ax.boxplot([pre_data[kpi].values, post_data[kpi].values], labels=["Pre", "Post"])
        ax.set_ylabel(kpi)
    ax.set_title("Overall Impact Analysis")
    plt.tight_layout()
    plt.close(fig)
    return analysis_text, fig

def analyze_all_advocates_impact(method, initiative, lob_filter, issue_filter, kpi, one_tailed,
                                  adoption_file, adoption_name_col, adoption_date_col, utilization_file):
    try:
        debug_print("πŸš€ Running Advocate Impact Analysis...")
        df = global_case_data.copy()

        if lob_filter != "All":
            df = df[df["LOB"] == lob_filter]
        if issue_filter != "All":
            df = df[df["issue_type"] == issue_filter]
        if df.empty:
            debug_print("⚠ No cases available for the selected filters.")
            return "No data available for the selected filters.", None, None

        df["case_date"] = pd.to_datetime(df["case_date"], utc=True, errors="coerce").dt.normalize().dt.date
        debug_print(f"βœ… Data filtered. {len(df)} cases remain.")
        debug_print(f"πŸ—“ Min case date: {df['case_date'].min()}, Max case date: {df['case_date'].max()}")

        # For Initiative Utilization, use standalone DF
        utilization_df = global_initiative_utilization.copy()
        if method == "Initiative Utilization" and utilization_file is not None:
            try:
                util_df = pd.read_csv(utilization_file.name)
            except Exception:
                try:
                    util_df = pd.read_excel(utilization_file.name)
                except Exception as e:
                    debug_print(f"❌ Error reading utilization file: {str(e)}")
                    return f"Error reading utilization file: {str(e)}", None, None
            if "serial_number" not in util_df.columns:
                debug_print("⚠ The uploaded utilization file must have a 'serial_number' column.")
                return "The uploaded utilization file must have a 'serial_number' column.", None, None
            utilization_df = util_df.copy()
            debug_print(f"βœ… Uploaded initiative utilization file processed: {utilization_df.shape[0]} rows.")
        else:
            debug_print("πŸ“‚ No initiative utilization file uploaded; using default global initiative utilization data.")

        # Build adoption mapping for Adoption Date method
        adoption_mapping = {}
        if method == "Adoption Date" and adoption_file is not None:
            try:
                uploaded_df = pd.read_csv(adoption_file.name)
            except Exception:
                try:
                    uploaded_df = pd.read_excel(adoption_file.name)
                except Exception as e:
                    debug_print(f"❌ Error reading adoption file: {str(e)}")
                    return f"Error reading adoption file: {str(e)}", None, None
            if adoption_name_col not in uploaded_df.columns or adoption_date_col not in uploaded_df.columns:
                debug_print("⚠ Specified columns not found in the uploaded adoption file.")
                return "Specified columns not found in the uploaded adoption file.", None, None
            debug_print("πŸ“‚ Processing uploaded adoption file...")
            for idx, row in uploaded_df.iterrows():
                name_uploaded = str(row[adoption_name_col])
                adoption_date = pd.to_datetime(row[adoption_date_col], utc=True, errors="coerce")
                if pd.isnull(adoption_date):
                    debug_print(f"⚠ Skipping invalid adoption date for {name_uploaded}")
                    continue
                adoption_date = adoption_date.date()
                # Map using fuzzy matching on the default global adoption names
                for adv in df["advocate"].unique():
                    score = fuzz.ratio(name_uploaded.lower(), adv.lower())
                    if score >= 95:
                        adoption_mapping[adv] = min(adoption_mapping.get(adv, adoption_date), adoption_date)
            debug_print(f"βœ… Uploaded adoption file processed. Mapped {len(adoption_mapping)} advocates.")
        else:
            debug_print("πŸ“‚ No adoption file uploaded; using default global adoption data.")

        # Normalize global adoption dates
        for col in ["Symbiosis_adoption_date", "Voice Translation_adoption_date", "NoteHero_adoption_date"]:
            global_advocate_adoption[col] = pd.to_datetime(global_advocate_adoption[col], utc=True, errors="coerce")
            global_advocate_adoption[col] = global_advocate_adoption[col].apply(lambda x: x.date() if pd.notnull(x) else None)

        all_pre_vals, all_post_vals = [], []
        results = []

        debug_print("πŸ”Ž Processing advocates...")

        for adv in df["advocate"].unique():
            try:
                df_adv = df[df["advocate"] == adv]

                if method == "Adoption Date":
                    if adv in adoption_mapping:
                        adoption_date = adoption_mapping[adv]
                    else:
                        col_name = initiative + "_adoption_date"
                        adoption_series = global_advocate_adoption.loc[global_advocate_adoption["advocate"] == adv, col_name]
                        if adoption_series.empty or pd.isnull(adoption_series.values[0]):
                            debug_print(f"⚠ Skipping {adv}: No valid adoption date found.")
                            continue
                        adoption_date = adoption_series.values[0]

                    if pd.isnull(adoption_date):
                        debug_print(f"⚠ Skipping {adv}: Adoption date is NULL after conversion.")
                        continue

                    debug_print(f"πŸ”Ž Processing {adv}: Adoption Date = {adoption_date}")

                    pre_data = df_adv[df_adv["case_date"] < adoption_date]
                    post_data = df_adv[df_adv["case_date"] >= adoption_date]

                    debug_print(f"   {adv}: Pre-data count = {len(pre_data)}, Post-data count = {len(post_data)}")

                    if pre_data.empty:
                        debug_print(f"⚠ Skipping {adv}: No pre-adoption cases.")
                        continue
                    if post_data.empty:
                        debug_print(f"⚠ Skipping {adv}: No post-adoption cases.")
                        continue

                    slice_info = f"Adoption Date: {adoption_date}"

                elif method == "Initiative Utilization":
                    col_name = initiative + "_utilized"
                    df_adv = df_adv.copy()
                    df_adv = df_adv.merge(utilization_df[["serial_number", col_name]], on="serial_number", how="left")
                    df_adv[col_name] = df_adv[col_name].fillna(0)
                    pre_data = df_adv[df_adv[col_name] == 0]
                    post_data = df_adv[df_adv[col_name] == 1]
                    slice_info = "Initiative Utilization"
                else:
                    continue

                if pre_data.empty or post_data.empty:
                    debug_print(f"⚠ Advocate {adv}: Not enough data; skipping.")
                    continue

                if kpi.lower() == "throughput":
                    pre_val = calculate_throughput(pre_data, pre_data["case_date"].min(), pre_data["case_date"].max())
                    post_val = calculate_throughput(post_data, post_data["case_date"].min(), post_data["case_date"].max())
                else:
                    pre_val = np.mean(pre_data[kpi].values)
                    post_val = np.mean(post_data[kpi].values)

                pct_change = ((post_val - pre_val) / pre_val) * 100 if pre_val else np.nan
                results.append({
                    "advocate": adv,
                    "Pre_Mean": pre_val,
                    "Post_Mean": post_val,
                    "Percent_Change": pct_change,
                    "Slice_Info": slice_info
                })

                all_pre_vals.extend(pre_data[kpi].values)
                all_post_vals.extend(post_data[kpi].values)

                debug_print(f"βœ… Processed {adv}: {pct_change:.2f}% change.")
            except Exception as e:
                debug_print(f"❌ Error processing {adv}: {str(e)}")

        if not results:
            debug_print("⚠ No valid advocates found for analysis.")
            return "No valid advocates found for analysis. Check the case date ranges.", None, None

        results_df = pd.DataFrame(results).sort_values(by="Percent_Change", ascending=False)

        # Perform aggregated T-Test
        try:
            if len(all_pre_vals) > 1 and len(all_post_vals) > 1:
                t_stat, p_value = stats.ttest_ind(all_pre_vals, all_post_vals, equal_var=False)
                if one_tailed:
                    p_value = p_value / 2
                    significance = "Statistically Significant" if p_value < 0.05 and t_stat > 0 else "Not Statistically Significant"
                else:
                    significance = "Statistically Significant" if p_value < 0.05 else "Not Statistically Significant"
            else:
                t_stat, p_value = np.nan, np.nan
                significance = "Insufficient Data for Statistical Test"
        except Exception as e:
            debug_print(f"❌ Error performing T-Test: {str(e)}")
            return f"Error performing T-Test: {str(e)}", None, None

        pre_mean = np.mean(all_pre_vals) if len(all_pre_vals) > 0 else np.nan
        post_mean = np.mean(all_post_vals) if len(all_post_vals) > 0 else np.nan
        overall_pct_change = ((post_mean - pre_mean) / pre_mean) * 100 if pre_mean else np.nan

        overall_summary = f"""πŸ“Š Aggregated Advocate Impact Analysis using method '{method}' for initiative '{initiative}' on KPI '{kpi}'.
Number of advocates analyzed: {len(results_df)}

Aggregated Pre vs Post Analysis:
- Pre-Adoption Mean: {pre_mean:.2f}
- Post-Adoption Mean: {post_mean:.2f}
- Percent Change: {overall_pct_change:.2f}%

T-Test Results:
- T-Statistic: {t_stat:.3f}
- P-Value: {p_value:.3f}
- Result: {significance}
"""
        fig, ax = plt.subplots(figsize=(6, 4))
        ax.bar(["Pre-Adoption", "Post-Adoption"], [pre_mean, post_mean], color=["blue", "green"])
        ax.set_title(f"Aggregated Impact of {initiative} on {kpi}")
        ax.set_ylabel(kpi)
        plt.tight_layout()
        plt.close(fig)

        debug_print("🎯 Advocate Impact Analysis completed.")
        return overall_summary, fig, results_df

    except Exception as e:
        debug_print(f"❌ Fatal Error in Function: {str(e)}")
        return f"Fatal Error: {str(e)}", None, None


with gr.Blocks() as demo:
    gr.Markdown("# Impact Analysis Dashboard")
    
    with gr.Tabs():
        # Tab 1: Overall Impact Analysis
        with gr.TabItem("Overall Impact Analysis"):
            gr.Markdown("### Overall Impact Analysis (Global Release Date)")
            overall_release_date = gr.Textbox(label="Global Release Date (YYYY-MM-DD)", placeholder="e.g., 2022-01-15")
            overall_lob = gr.Dropdown(choices=["All", "Modern Life", "Xbox", "CAPS", "Devices", "Modern Work"],
                                      label="Filter by LOB", value="All")
            overall_issue = gr.Dropdown(choices=["All", "Billing", "Technical", "Hacking", "Service", "Access"],
                                        label="Filter by Issue Type", value="All")
            overall_kpi = gr.Dropdown(choices=["CSAT", "days_to_close", "first_contact_resolution", "CPI", "throughput"],
                                      label="Select KPI", value="CSAT")
            one_tailed_overall = gr.Checkbox(label="Use One-Tailed T-Test")
            overall_btn = gr.Button("Analyze Overall Impact")
            overall_output = gr.Textbox(label="Overall Impact Analysis Results")
            overall_plot = gr.Plot(label="Overall Impact Graph")
            
            overall_btn.click(analyze_overall_impact,
                              inputs=[overall_release_date, overall_lob, overall_issue, overall_kpi, one_tailed_overall],
                              outputs=[overall_output, overall_plot])
        
        # Tab 2: Advocate Impact Analysis
        with gr.TabItem("Advocate Impact Analysis"):
            gr.Markdown("### Advocate Impact Analysis (Aggregated Pre vs Post)")
            adoption_method = gr.Radio(choices=["Adoption Date", "Initiative Utilization"],
                                        label="Method", value="Adoption Date")
            initiative_select = gr.Dropdown(choices=["Symbiosis", "Voice Translation", "NoteHero"],
                                            label="Select Initiative", value="Symbiosis")
            adv_lob = gr.Dropdown(choices=["All", "Modern Life", "Xbox", "CAPS", "Devices", "Modern Work"],
                                  label="Filter by LOB", value="All")
            adv_issue = gr.Dropdown(choices=["All", "Billing", "Technical", "Hacking", "Service", "Access"],
                                    label="Filter by Issue Type", value="All")
            adv_kpi = gr.Dropdown(choices=["CSAT", "days_to_close", "first_contact_resolution", "CPI", "throughput"],
                                  label="Select KPI", value="CSAT")
            one_tailed_adv = gr.Checkbox(label="Use One-Tailed T-Test")
            with gr.Accordion("Optional File Uploads (Click to expand)", open=False):
                gr.Markdown("Upload is optional. For Adoption Date method, upload a CSV/Excel with two columns (Advocate Name and Adoption Date). For Initiative Utilization, upload a CSV/Excel with a 'serial_number' column.")
                adoption_file = gr.File(label="Upload Adoption Date File (optional)")
                adoption_name_col = gr.Textbox(label="Adoption File: Advocate Name Column", placeholder="e.g., Name")
                adoption_date_col = gr.Textbox(label="Adoption File: Adoption Date Column", placeholder="e.g., AdoptionDate")
                utilization_file = gr.File(label="Upload Initiative Utilization File (optional)")
            adv_btn = gr.Button("Analyze Advocate Impact")
            adv_overall_output = gr.Textbox(label="Aggregated Advocate Impact Summary")
            adv_plot = gr.Plot(label="Aggregated Advocate Impact Graph")
            adv_table = gr.Dataframe(label="Advocate Impact Details")
            
            adv_btn.click(analyze_all_advocates_impact,
                          inputs=[adoption_method, initiative_select, adv_lob, adv_issue, adv_kpi, one_tailed_adv,
                                  adoption_file, adoption_name_col, adoption_date_col, utilization_file],
                          outputs=[adv_overall_output, adv_plot, adv_table])
        
        # Optional Debug Logs Tab
        with gr.TabItem("Debug Logs"):
            gr.Markdown("### Debug Logs")
            debug_btn = gr.Button("Refresh Debug Logs")
            debug_output = gr.Textbox(label="Debug Logs", lines=15)
            debug_btn.click(lambda: "Check console output for debug logs.", inputs=[], outputs=[debug_output])
            
demo.launch()