File size: 10,568 Bytes
7e60a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import asyncio
from typing import Any, Dict, List, Optional, OrderedDict, Tuple, ValuesView

import gradio_client  # type: ignore

from h2ogpt_client import _utils
from h2ogpt_client._h2ogpt_enums import (
    DocumentChoices,
    LangChainAction,
    LangChainMode,
    PromptType,
)


class Client:
    """h2oGPT Client."""

    def __init__(self, src: str, huggingface_token: Optional[str] = None):
        """
        Creates a GPT client.
        :param src: either the full URL to the hosted h2oGPT
            (e.g. "http://0.0.0.0:7860", "https://fc752f297207f01c32.gradio.live")
            or name of the Hugging Face Space to load, (e.g. "h2oai/h2ogpt-chatbot")
        :param huggingface_token: Hugging Face token to use to access private Spaces
        """
        self._client = gradio_client.Client(
            src=src, hf_token=huggingface_token, serialize=False, verbose=False
        )
        self._text_completion = TextCompletionCreator(self)
        self._chat_completion = ChatCompletionCreator(self)

    @property
    def text_completion(self) -> "TextCompletionCreator":
        """Text completion."""
        return self._text_completion

    @property
    def chat_completion(self) -> "ChatCompletionCreator":
        """Chat completion."""
        return self._chat_completion

    def _predict(self, *args, api_name: str) -> Any:
        return self._client.submit(*args, api_name=api_name).result()

    async def _predict_async(self, *args, api_name: str) -> Any:
        return await asyncio.wrap_future(self._client.submit(*args, api_name=api_name))


class TextCompletionCreator:
    """Builder that can create text completions."""

    def __init__(self, client: Client):
        self._client = client

    def create(
        self,
        prompt_type: PromptType = PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = 40,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 128,
        max_time: int = 180,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: LangChainMode = LangChainMode.DISABLED,
    ) -> "TextCompletion":
        """
        Creates a new text completion.

        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        """
        params = _utils.to_h2ogpt_params(locals().copy())
        params["instruction"] = ""  # empty when chat_mode is False
        params["iinput"] = ""  # only chat_mode is True
        params["stream_output"] = False
        params["prompt_type"] = prompt_type.value  # convert to serializable type
        params["prompt_dict"] = ""  # empty as prompt_type cannot be 'custom'
        params["chat"] = False
        params["instruction_nochat"] = None  # future prompt
        params["langchain_mode"] = langchain_mode.value  # convert to serializable type
        params["langchain_action"] = LangChainAction.QUERY.value
        params["langchain_agents"] = []
        params["top_k_docs"] = 4  # langchain: number of document chunks
        params["chunk"] = True  # langchain: whether to chunk documents
        params["chunk_size"] = 512  # langchain: chunk size for document chunking
        params["document_subset"] = DocumentChoices.Relevant.name
        params["document_choice"] = []
        return TextCompletion(self._client, params)


class TextCompletion:
    """Text completion."""

    _API_NAME = "/submit_nochat"

    def __init__(self, client: Client, parameters: OrderedDict[str, Any]):
        self._client = client
        self._parameters = parameters

    def _get_parameters(self, prompt: str) -> ValuesView:
        self._parameters["instruction_nochat"] = prompt
        return self._parameters.values()

    async def complete(self, prompt: str) -> str:
        """
        Complete this text completion.

        :param prompt: text prompt to generate completion for
        :return: response from the model
        """

        return await self._client._predict_async(
            *self._get_parameters(prompt), api_name=self._API_NAME
        )

    def complete_sync(self, prompt: str) -> str:
        """
        Complete this text completion synchronously.

        :param prompt: text prompt to generate completion for
        :return: response from the model
        """
        return self._client._predict(
            *self._get_parameters(prompt), api_name=self._API_NAME
        )


class ChatCompletionCreator:
    """Chat completion."""

    def __init__(self, client: Client):
        self._client = client

    def create(
        self,
        prompt_type: PromptType = PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = 40,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 128,
        max_time: int = 180,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: LangChainMode = LangChainMode.DISABLED,
    ) -> "ChatCompletion":
        """
        Creates a new chat completion.

        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        """
        params = _utils.to_h2ogpt_params(locals().copy())
        params["instruction"] = None  # future prompts
        params["iinput"] = ""  # ??
        params["stream_output"] = False
        params["prompt_type"] = prompt_type.value  # convert to serializable type
        params["prompt_dict"] = ""  # empty as prompt_type cannot be 'custom'
        params["chat"] = True
        params["instruction_nochat"] = ""  # empty when chat_mode is True
        params["langchain_mode"] = langchain_mode.value  # convert to serializable type
        params["langchain_action"] = LangChainAction.QUERY.value
        params["langchain_agents"] = []
        params["top_k_docs"] = 4  # langchain: number of document chunks
        params["chunk"] = True  # langchain: whether to chunk documents
        params["chunk_size"] = 512  # langchain: chunk size for document chunking
        params["document_subset"] = DocumentChoices.Relevant.name
        params["document_choice"] = []
        params["chatbot"] = []  # chat history
        return ChatCompletion(self._client, params)


class ChatCompletion:
    """Chat completion."""

    _API_NAME = "/instruction_bot"

    def __init__(self, client: Client, parameters: OrderedDict[str, Any]):
        self._client = client
        self._parameters = parameters

    def _get_parameters(self, prompt: str) -> ValuesView:
        self._parameters["instruction"] = prompt
        self._parameters["chatbot"] += [[prompt, None]]
        return self._parameters.values()

    def _get_reply(self, response: Tuple[List[List[str]]]) -> Dict[str, str]:
        self._parameters["chatbot"][-1][1] = response[0][-1][1]
        return {"user": response[0][-1][0], "gpt": response[0][-1][1]}

    async def chat(self, prompt: str) -> Dict[str, str]:
        """
        Complete this chat completion.

        :param prompt: text prompt to generate completions for
        :returns chat reply
        """
        response = await self._client._predict_async(
            *self._get_parameters(prompt), api_name=self._API_NAME
        )
        return self._get_reply(response)

    def chat_sync(self, prompt: str) -> Dict[str, str]:
        """
        Complete this chat completion.

        :param prompt: text prompt to generate completions for
        :returns chat reply
        """
        response = self._client._predict(
            *self._get_parameters(prompt), api_name=self._API_NAME
        )
        return self._get_reply(response)

    def chat_history(self) -> List[Dict[str, str]]:
        """Returns the full chat history."""
        return [{"user": i[0], "gpt": i[1]} for i in self._parameters["chatbot"]]