Spaces:
Runtime error
Runtime error
Update LLMwithvoice.py
Browse files- LLMwithvoice.py +12 -9
LLMwithvoice.py
CHANGED
@@ -33,8 +33,17 @@ def generate_speech(prompt, description):
|
|
33 |
|
34 |
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids).to(torch.float32)
|
35 |
audio_arr = generation.cpu().numpy().squeeze()
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return audio_path
|
39 |
|
40 |
def chat_with_roberta(api_token, question, context):
|
@@ -51,10 +60,4 @@ def chat_with_roberta(api_token, question, context):
|
|
51 |
try:
|
52 |
return response['answer']
|
53 |
except (IndexError, KeyError):
|
54 |
-
return f"Unexpected response structure: {response}"
|
55 |
-
|
56 |
-
def gradio_interface(api_token, context, question):
|
57 |
-
answer = chat_with_roberta(api_token, question, context)
|
58 |
-
description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
|
59 |
-
audio_path = generate_speech(answer, description)
|
60 |
-
return answer, audio_path
|
|
|
33 |
|
34 |
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids).to(torch.float32)
|
35 |
audio_arr = generation.cpu().numpy().squeeze()
|
36 |
+
|
37 |
+
# Construct the audio path dynamically
|
38 |
+
audio_filename = "parler_tts_out.wav"
|
39 |
+
audio_path = f"/mnt/data/{audio_filename}"
|
40 |
+
|
41 |
+
try:
|
42 |
+
sf.write(audio_path, audio_arr, model.config.sampling_rate)
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error writing audio file: {e}")
|
45 |
+
# Handle the error, raise or log it, or provide an alternative approach
|
46 |
+
|
47 |
return audio_path
|
48 |
|
49 |
def chat_with_roberta(api_token, question, context):
|
|
|
60 |
try:
|
61 |
return response['answer']
|
62 |
except (IndexError, KeyError):
|
63 |
+
return f"Unexpected response structure: {response}"
|
|
|
|
|
|
|
|
|
|
|
|