Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
import PyMuPDF | |
# Get the Hugging Face API Token from environment variables | |
HF_API_TOKEN = os.getenv("HF_API_KEY") | |
if not HF_API_TOKEN: | |
raise ValueError("Hugging Face API Token is not set in the environment variables.") | |
# Hugging Face API URL and header for Gemma 27B-it model | |
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it" | |
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
def query_model(api_url, payload): | |
response = requests.post(api_url, headers=HEADERS, json=payload) | |
return response.json() | |
def extract_pdf_text(uploaded_file): | |
pdf_text = "" | |
pdf_doc = PyMuPDF.open(uploaded_file) | |
for page_num in range(len(pdf_doc)): | |
pdf_text += pdf_doc.getPageText(page_num) | |
return pdf_text | |
def add_message_to_conversation(user_message, bot_message, model_name): | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = [] | |
st.session_state.conversation.append((user_message, bot_message, model_name)) | |
# Streamlit app | |
st.set_page_config(page_title="Gemma 27B-it Chatbot Interface", layout="wide") | |
st.title("Gemma 27B-it Chatbot Interface") | |
st.write("Gemma 27B-it Chatbot Interface") | |
# Initialize session state for conversation and uploaded file | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = [] | |
if "uploaded_file" not in st.session_state: | |
st.session_state.uploaded_file = None | |
# File uploader for PDF | |
uploaded_file = st.file_uploader("Upload a PDF", type="pdf") | |
# Handle PDF upload and text extraction | |
if uploaded_file: | |
pdf_text = extract_pdf_text(uploaded_file) | |
st.write("### PDF Text Extracted:") | |
st.write(pdf_text) | |
# User input for question | |
question = st.text_input("Question", placeholder="Enter your question here...") | |
# Handle user input and Gemma 27B-it model response | |
if st.button("Send") and question: | |
try: | |
with st.spinner("Waiting for the model to respond..."): | |
# Construct the chat history | |
chat_history = " ".join([msg[1] for msg in st.session_state.conversation[-5:]]) + f"User: {question}\n" | |
response = query_model(GEMMA_27B_API_URL, {"inputs": chat_history}) | |
if isinstance(response, list): | |
answer = response[0].get("generated_text", "No response") | |
elif isinstance(response, dict): | |
answer = response.get("generated_text", "No response") | |
else: | |
answer = "No response" | |
# Add PDF text to the chat history | |
if st.session_state.uploaded_file: | |
chat_history += f"Document Text: {pdf_text}\n" | |
add_message_to_conversation(question, answer, "Gemma-2-27B-it") | |
except ValueError as e: | |
st.error(str(e)) | |
# Custom CSS for chat bubbles | |
st.markdown( | |
""" | |
<style> | |
.chat-bubble { | |
padding: 10px 14px; | |
border-radius: 14px; | |
margin-bottom: 10px; | |
display: inline-block; | |
max-width: 80%; | |
color: black; | |
} | |
.chat-bubble.user { | |
background-color: #dcf8c6; | |
align-self: flex-end; | |
} | |
.chat-bubble.bot { | |
background-color: #fff; | |
align-self: flex-start; | |
} | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
gap: 10px; | |
margin-top: 20px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Display the conversation | |
st.write('<div class="chat-container">', unsafe_allow_html=True) | |
for user_message, bot_message, model_name in st.session_state.conversation: | |
st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True) | |
st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True) | |
st.write('</div>', unsafe_allow_html=True) |