Spaces:
Runtime error
Runtime error
revert
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from PIL import Image
|
|
| 3 |
import torch
|
| 4 |
import soundfile as sf
|
| 5 |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
|
|
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
# Define model path
|
|
@@ -23,37 +24,27 @@ user_prompt = '<|user|>'
|
|
| 23 |
assistant_prompt = '<|assistant|>'
|
| 24 |
prompt_suffix = '<|end|>'
|
| 25 |
|
| 26 |
-
# Define inference
|
| 27 |
@spaces.GPU
|
| 28 |
-
def
|
| 29 |
-
if not
|
| 30 |
-
return "Please upload
|
| 31 |
-
|
| 32 |
-
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
|
| 33 |
-
inputs = processor(text=prompt, images=image, return_tensors='pt').to(model.device)
|
| 34 |
-
|
| 35 |
-
with torch.no_grad():
|
| 36 |
-
generate_ids = model.generate(
|
| 37 |
-
**inputs,
|
| 38 |
-
max_new_tokens=200,
|
| 39 |
-
num_logits_to_keep=0,
|
| 40 |
-
)
|
| 41 |
-
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 42 |
-
response = processor.batch_decode(
|
| 43 |
-
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 44 |
-
)[0]
|
| 45 |
-
|
| 46 |
-
return response
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
with torch.no_grad():
|
| 58 |
generate_ids = model.generate(
|
| 59 |
**inputs,
|
|
@@ -64,7 +55,7 @@ def process_audio(audio, question):
|
|
| 64 |
response = processor.batch_decode(
|
| 65 |
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 66 |
)[0]
|
| 67 |
-
|
| 68 |
return response
|
| 69 |
|
| 70 |
# Gradio interface
|
|
@@ -79,59 +70,57 @@ with gr.Blocks(
|
|
| 79 |
gr.Markdown(
|
| 80 |
"""
|
| 81 |
# Phi-4 Multimodal Demo
|
| 82 |
-
|
| 83 |
Built with the `microsoft/Phi-4-multimodal-instruct` model by xAI.
|
| 84 |
"""
|
| 85 |
)
|
| 86 |
|
| 87 |
-
with gr.
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
image_question = gr.Textbox(
|
| 94 |
-
label="Your Question",
|
| 95 |
-
placeholder="e.g., 'What is shown in this image?'",
|
| 96 |
-
lines=2,
|
| 97 |
-
)
|
| 98 |
-
image_submit = gr.Button("Submit", variant="primary")
|
| 99 |
-
with gr.Column(scale=2):
|
| 100 |
-
image_output = gr.Textbox(
|
| 101 |
-
label="Model Response",
|
| 102 |
-
placeholder="Response will appear here...",
|
| 103 |
-
lines=10,
|
| 104 |
-
interactive=False,
|
| 105 |
-
)
|
| 106 |
-
image_submit.click(
|
| 107 |
-
fn=process_image,
|
| 108 |
-
inputs=[image_input, image_question],
|
| 109 |
-
outputs=image_output,
|
| 110 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
label="Your Question",
|
| 119 |
-
placeholder="e.g., 'Transcribe this audio.'",
|
| 120 |
-
lines=2,
|
| 121 |
-
)
|
| 122 |
-
audio_submit = gr.Button("Submit", variant="primary")
|
| 123 |
-
with gr.Column(scale=2):
|
| 124 |
-
audio_output = gr.Textbox(
|
| 125 |
-
label="Model Response",
|
| 126 |
-
placeholder="Response will appear here...",
|
| 127 |
-
lines=10,
|
| 128 |
-
interactive=False,
|
| 129 |
-
)
|
| 130 |
-
audio_submit.click(
|
| 131 |
-
fn=process_audio,
|
| 132 |
-
inputs=[audio_input, audio_question],
|
| 133 |
-
outputs=audio_output,
|
| 134 |
)
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
# Launch the demo
|
| 137 |
demo.launch()
|
|
|
|
| 3 |
import torch
|
| 4 |
import soundfile as sf
|
| 5 |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 6 |
+
from urllib.request import urlopen
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
# Define model path
|
|
|
|
| 24 |
assistant_prompt = '<|assistant|>'
|
| 25 |
prompt_suffix = '<|end|>'
|
| 26 |
|
| 27 |
+
# Define inference function
|
| 28 |
@spaces.GPU
|
| 29 |
+
def process_input(input_type, file, question):
|
| 30 |
+
if not file or not question:
|
| 31 |
+
return "Please upload a file and provide a question."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Prepare the prompt
|
| 34 |
+
if input_type == "Image":
|
| 35 |
+
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
|
| 36 |
+
# Open image from uploaded file
|
| 37 |
+
image = Image.open(file)
|
| 38 |
+
inputs = processor(text=prompt, images=image, return_tensors='pt').to(model.device)
|
| 39 |
+
elif input_type == "Audio":
|
| 40 |
+
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
|
| 41 |
+
# Read audio from uploaded file
|
| 42 |
+
audio, samplerate = sf.read(file)
|
| 43 |
+
inputs = processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(model.device)
|
| 44 |
+
else:
|
| 45 |
+
return "Invalid input type selected."
|
| 46 |
+
|
| 47 |
+
# Generate response
|
| 48 |
with torch.no_grad():
|
| 49 |
generate_ids = model.generate(
|
| 50 |
**inputs,
|
|
|
|
| 55 |
response = processor.batch_decode(
|
| 56 |
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 57 |
)[0]
|
| 58 |
+
|
| 59 |
return response
|
| 60 |
|
| 61 |
# Gradio interface
|
|
|
|
| 70 |
gr.Markdown(
|
| 71 |
"""
|
| 72 |
# Phi-4 Multimodal Demo
|
| 73 |
+
Upload an **image** or **audio** file, ask a question, and get a response from the model!
|
| 74 |
Built with the `microsoft/Phi-4-multimodal-instruct` model by xAI.
|
| 75 |
"""
|
| 76 |
)
|
| 77 |
|
| 78 |
+
with gr.Row():
|
| 79 |
+
with gr.Column(scale=1):
|
| 80 |
+
input_type = gr.Radio(
|
| 81 |
+
choices=["Image", "Audio"],
|
| 82 |
+
label="Select Input Type",
|
| 83 |
+
value="Image",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
+
file_input = gr.File(
|
| 86 |
+
label="Upload Your File",
|
| 87 |
+
file_types=["image", "audio"],
|
| 88 |
+
)
|
| 89 |
+
question_input = gr.Textbox(
|
| 90 |
+
label="Your Question",
|
| 91 |
+
placeholder="e.g., 'What is shown in this image?' or 'Transcribe this audio.'",
|
| 92 |
+
lines=2,
|
| 93 |
+
)
|
| 94 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
| 95 |
|
| 96 |
+
with gr.Column(scale=2):
|
| 97 |
+
output_text = gr.Textbox(
|
| 98 |
+
label="Model Response",
|
| 99 |
+
placeholder="Response will appear here...",
|
| 100 |
+
lines=10,
|
| 101 |
+
interactive=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# Example section
|
| 105 |
+
with gr.Accordion("Examples", open=False):
|
| 106 |
+
gr.Markdown("Try these examples:")
|
| 107 |
+
gr.Examples(
|
| 108 |
+
examples=[
|
| 109 |
+
["Image", "https://www.ilankelman.org/stopsigns/australia.jpg", "What is shown in this image?"],
|
| 110 |
+
["Audio", "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac", "Transcribe the audio to text."],
|
| 111 |
+
],
|
| 112 |
+
inputs=[input_type, file_input, question_input],
|
| 113 |
+
outputs=output_text,
|
| 114 |
+
fn=process_input,
|
| 115 |
+
cache_examples=False,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Connect the submit button
|
| 119 |
+
submit_btn.click(
|
| 120 |
+
fn=process_input,
|
| 121 |
+
inputs=[input_type, file_input, question_input],
|
| 122 |
+
outputs=output_text,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
# Launch the demo
|
| 126 |
demo.launch()
|