File size: 5,771 Bytes
ae81e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
"""
Alpaca training dataloaders
We adopt the original prompt template; goes something like:
```
Below is an instruction that describes a task.
Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
{response}
```
See `PROMPT_DICT` for more.
"""
from functools import partial
from os.path import join
from datasets import load_metric, load_dataset
from .utils import (
get_lm_loader, get_seq2seq_loader,
convert_to_hf_dataset,
get_tokenizer_from_config,
download_scrolls_metric as download_metric
)
from .utils.packing import ConcatDataset
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:\n"
),
}
def load_data(name: str, dataset_config: dict, pretrained_model_config: dict,
preprocess_config: dict, **loader_kwargs: any):
"""
Shared function to load dataset from experiment config
-> e.g., see configs/experiments/distill_alpaca_clean_lr1e-2.yaml
"""
# Misc. setup
cache_dir = dataset_config['cache_dir']
input_len = dataset_config['chunk_size']
concat_data = dataset_config['concat_data']
tokenizer_name = pretrained_model_config['pretrained_model_name_or_path']
tokenizer_name = tokenizer_name.split('/')[-1]
# save_path = join(cache_dir, f'{name}_{tokenizer_name}')
# Setup tokenizer
tokenizer = get_tokenizer_from_config(pretrained_model_config)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f'Setting tokenizer.pad_token to {tokenizer.pad_token}')
tokenizer.padding_side = 'left' # for decoder-only generation
# Get initial data
ignore_kwargs = ['concat_data', 'chunk_size', 'pose_kwargs']
dataset = load_dataset(
**{k: v for k, v in dataset_config.items() if k not in ignore_kwargs}
)
if dataset_config['name'] == 'samsum': # hack
dataset = dataset.rename_column('dialogue', 'input')
dataset = dataset.rename_column('summary', 'output')
_instruction = 'Summarize this dialogue.'
for split in dataset.keys():
dataset[split] = dataset[split].add_column(
'instruction', [_instruction] * len(dataset[split])
)
train_set, val_set, test_set = dataset['train'], dataset['validation'], dataset['test']
dataset = train_set # hack to work with below code
else:
dataset = dataset['train']
train_set = convert_to_hf_dataset([dataset[ix] for ix in range(200, len(dataset))], cache_dir)
val_set = convert_to_hf_dataset([dataset[ix] for ix in range(200)], cache_dir)
test_set = convert_to_hf_dataset([dataset[ix] for ix in range(200)], cache_dir)
# Convert to dicts of {input_ids, attention_mask, labels}
train_set = train_set.map(
partial(template_and_tokenize, tokenizer=tokenizer, include_label=True),
remove_columns=list(dataset.features),) # load_from_cache_file=False)
val_set = val_set.map(
partial(template_and_tokenize, tokenizer=tokenizer, include_label=True),
remove_columns=list(dataset.features),) # load_from_cache_file=False)
test_set = test_set.map(
partial(template_and_tokenize, tokenizer=tokenizer, include_label=False),
remove_columns=list(dataset.features),) # load_from_cache_file=False)
# Chunk together train and val sets
if concat_data:
train_set = ConcatDataset(train_set, chunk_size=input_len)
val_set = ConcatDataset(val_set, chunk_size=input_len)
# Get dataloaders
dataloaders = {
'train': get_lm_loader(train_set, tokenizer, 'train', input_len, **loader_kwargs),
'validation': get_lm_loader(val_set, tokenizer, 'validation', input_len, **loader_kwargs),
'test': get_seq2seq_loader(test_set, tokenizer, 'test', **loader_kwargs),
}
# Evaluation metric
try:
metric = load_metric(download_metric(), 'gov_report') # hack but we want rouge
except Exception as e:
print(f'Error loading metric: {e}')
metric = None
# Finishing touches
for k, v in dataloaders.items(): # Make tokenizer accessible
dataloaders[k].dataset.tokenizer = tokenizer
dataloaders[k].dataset.metric = metric
return dataloaders
def template_and_tokenize(sample, tokenizer, include_label: bool = True):
"""
Format dataset context and answers into single-sequence prompts
"""
if sample.get('input', '') == '':
prompt = PROMPT_DICT["prompt_no_input"].format_map(sample)
else:
prompt = PROMPT_DICT["prompt_input"].format_map(sample)
prompt = tokenizer.encode(prompt, add_special_tokens=True)
if include_label:
answer = tokenizer.encode(f'{sample["output"]}{tokenizer.eos_token}',
add_special_tokens=False)
target = None
else:
answer = []
target = tokenizer.encode(f'{sample["output"]}{tokenizer.eos_token}',
add_special_tokens=False)
input_ids = prompt + answer
attn_mask = [1] * len(input_ids)
sample = {
"input_ids": input_ids,
"attention_mask" : attn_mask,
"labels": [-100] * len(prompt) + answer if include_label else target,
}
return sample
|