File size: 5,771 Bytes
ae81e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Alpaca training dataloaders

We adopt the original prompt template; goes something like:
```
Below is an instruction that describes a task. 
Write a response that appropriately completes the request.
### Instruction:
{instruction}
 
### Response:
{response}
```
See `PROMPT_DICT` for more. 
"""
from functools import partial
from os.path import join

from datasets import load_metric, load_dataset

from .utils import (
    get_lm_loader, get_seq2seq_loader,
    convert_to_hf_dataset, 
    get_tokenizer_from_config,
    download_scrolls_metric as download_metric
)
from .utils.packing import ConcatDataset


PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:\n"
    ),
}


def load_data(name: str, dataset_config: dict, pretrained_model_config: dict,
              preprocess_config: dict, **loader_kwargs: any):
    """
    Shared function to load dataset from experiment config
    -> e.g., see configs/experiments/distill_alpaca_clean_lr1e-2.yaml
    """
    # Misc. setup
    cache_dir = dataset_config['cache_dir']
    input_len = dataset_config['chunk_size']
    concat_data = dataset_config['concat_data']

    tokenizer_name = pretrained_model_config['pretrained_model_name_or_path']
    tokenizer_name = tokenizer_name.split('/')[-1]
    # save_path = join(cache_dir, f'{name}_{tokenizer_name}')
    
    # Setup tokenizer
    tokenizer = get_tokenizer_from_config(pretrained_model_config)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        print(f'Setting tokenizer.pad_token to {tokenizer.pad_token}')

    tokenizer.padding_side = 'left'  # for decoder-only generation
    # Get initial data
    ignore_kwargs = ['concat_data', 'chunk_size', 'pose_kwargs']
    dataset = load_dataset(
        **{k: v for k, v in dataset_config.items() if k not in ignore_kwargs}
    )
    if dataset_config['name'] == 'samsum':  # hack
        dataset = dataset.rename_column('dialogue', 'input')
        dataset = dataset.rename_column('summary', 'output')
        _instruction = 'Summarize this dialogue.'
        for split in dataset.keys():
            dataset[split] = dataset[split].add_column(
                'instruction', [_instruction] * len(dataset[split])
            )
        train_set, val_set, test_set = dataset['train'], dataset['validation'], dataset['test']
        dataset = train_set  # hack to work with below code
    else:
        dataset = dataset['train']
        train_set = convert_to_hf_dataset([dataset[ix] for ix in range(200, len(dataset))], cache_dir)
        val_set   = convert_to_hf_dataset([dataset[ix] for ix in range(200)], cache_dir)
        test_set  = convert_to_hf_dataset([dataset[ix] for ix in range(200)], cache_dir)

    # Convert to dicts of {input_ids, attention_mask, labels}
    train_set = train_set.map(
        partial(template_and_tokenize, tokenizer=tokenizer, include_label=True), 
        remove_columns=list(dataset.features),) #  load_from_cache_file=False)
    val_set = val_set.map(
        partial(template_and_tokenize, tokenizer=tokenizer, include_label=True),
        remove_columns=list(dataset.features),) #  load_from_cache_file=False)
    test_set  = test_set.map(
        partial(template_and_tokenize, tokenizer=tokenizer, include_label=False),
        remove_columns=list(dataset.features),) #  load_from_cache_file=False)

    # Chunk together train and val sets
    if concat_data:
        train_set = ConcatDataset(train_set, chunk_size=input_len)
        val_set = ConcatDataset(val_set, chunk_size=input_len)

    # Get dataloaders
    dataloaders = {
        'train': get_lm_loader(train_set, tokenizer, 'train', input_len, **loader_kwargs),
        'validation': get_lm_loader(val_set, tokenizer, 'validation', input_len, **loader_kwargs),
        'test': get_seq2seq_loader(test_set, tokenizer, 'test', **loader_kwargs),
    }
    # Evaluation metric
    try:
        metric = load_metric(download_metric(), 'gov_report')  # hack but we want rouge
    except Exception as e:
        print(f'Error loading metric: {e}')
        metric = None

    # Finishing touches
    for k, v in dataloaders.items():  # Make tokenizer accessible
        dataloaders[k].dataset.tokenizer = tokenizer
        dataloaders[k].dataset.metric = metric
    return dataloaders


def template_and_tokenize(sample, tokenizer, include_label: bool = True):
    """
    Format dataset context and answers into single-sequence prompts
    """
    if sample.get('input', '') == '':
        prompt = PROMPT_DICT["prompt_no_input"].format_map(sample)
    else:
        prompt = PROMPT_DICT["prompt_input"].format_map(sample)

    prompt = tokenizer.encode(prompt, add_special_tokens=True)
    if include_label:
        answer = tokenizer.encode(f'{sample["output"]}{tokenizer.eos_token}', 
                                  add_special_tokens=False)
        target = None
    else:
        answer = []
        target = tokenizer.encode(f'{sample["output"]}{tokenizer.eos_token}', 
                                  add_special_tokens=False)
    input_ids = prompt + answer
    attn_mask = [1] * len(input_ids)

    sample =  {
        "input_ids": input_ids,
        "attention_mask" : attn_mask,
        "labels": [-100] * len(prompt) + answer if include_label else target,
    }
    return sample