whisperkit-android-benchmarks / performance_generate.py
ardaatahan's picture
initial commit
79fc12a
raw
history blame
12 kB
import json
import os
import shutil
import sys
from collections import defaultdict
from statistics import mean
import pandas as pd
import requests
from constants import BASE_WHISPERKIT_BENCHMARK_URL
from text_normalizer import text_normalizer
from utils import compute_average_wer, download_dataset
def fetch_evaluation_data(url):
"""
Fetches evaluation data from the given URL.
:param url: The URL to fetch the evaluation data from.
:returns: The evaluation data as a dictionary.
:rauses: sys.exit if the request fails
"""
response = requests.get(url)
if response.status_code == 200:
return json.loads(response.text)
else:
sys.exit(f"Failed to fetch WhisperKit evals: {response.text}")
def process_benchmark_file(file_path, dataset_dfs, device_map, results):
"""
Processes a single benchmark file and updates the results dictionary.
:param file_path: Path to the benchmark JSON file.
:param dataset_dfs: Dictionary of DataFrames containing dataset information.
:param results: Dictionary to store the processed results.
This function reads a benchmark JSON file, extracts relevant information,
and updates the results dictionary with various metrics including WER,
speed, tokens per second, and quality of inference (QoI).
"""
with open(file_path, "r") as file:
test_results = json.load(file)
if len(test_results) == 0:
return
commit_hash_timestamp = file_path.split("/")[-2]
commit_timestamp, commit_hash = commit_hash_timestamp.split("_")
first_test_result = test_results[0]
if first_test_result is None:
return
filename = file_path.split("/")[-1].strip(".json")
device, company, model, dataset_dir, timestamp = filename.split("_")
model = f"{company}_{model}"
if device not in device_map:
return
device = device_map[device]
os_info = first_test_result["staticAttributes"]["os"]
key = (model, device, os_info, commit_timestamp)
dataset_name = dataset_dir
for test_result in test_results:
if test_result is None:
continue
test_info = test_result["testInfo"]
audio_file_name = test_info["audioFile"]
dataset_df = dataset_dfs[dataset_name]
wer_entry = {
"prediction": text_normalizer(test_info["prediction"]),
"reference": text_normalizer(test_info["reference"]),
}
results[key]["timestamp"] = timestamp
results[key]["average_wer"].append(wer_entry)
input_audio_seconds = test_info["timings"]["inputAudioSeconds"]
full_pipeline = test_info["timings"]["fullPipeline"] / 1000
time_elapsed = test_result["latencyStats"]["measurements"]["timeElapsed"]
total_decoding_loops = test_info["timings"]["totalDecodingLoops"]
results[key]["dataset_speed"][dataset_name][
"inputAudioSeconds"
] += input_audio_seconds
results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline
results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds
results[key]["speed"]["fullPipeline"] += full_pipeline
results[key]["commit_hash"] = commit_hash
results[key]["commit_timestamp"] = commit_timestamp
results[key]["dataset_tokens_per_second"][dataset_name][
"totalDecodingLoops"
] += total_decoding_loops
results[key]["dataset_tokens_per_second"][dataset_name][
"timeElapsed"
] += time_elapsed
results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops
results[key]["tokens_per_second"]["timeElapsed"] += time_elapsed
audio = audio_file_name.split(".")[0]
audio = audio.split("-")[0]
dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0]
reference_wer = dataset_row["wer"]
prediction_wer = test_info["wer"]
results[key]["qoi"].append(1 if prediction_wer <= reference_wer * 110 else 0)
def calculate_and_save_performance_results(
performance_results, performance_output_path
):
"""
Calculates final performance metrics and saves them to a JSON file.
:param performance_results: Dictionary containing raw performance data.
:param performance_output_path: Path to save the processed performance results.
This function processes the raw performance data, calculates average metrics,
and writes the final results to a JSON file, with each entry representing
a unique combination of model, device, and OS.
"""
not_supported = []
with open(performance_output_path, "w") as performance_file:
for key, data in performance_results.items():
model, device, os_info, timestamp = key
speed = round(
data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2
)
# if speed < 1.0:
# not_supported.append((model, device, os_info))
# continue
performance_entry = {
"model": model.replace("_", "/"),
"device": device,
"os": os_info.replace("_", " "),
"timestamp": data["timestamp"],
"speed": speed,
"tokens_per_second": round(
data["tokens_per_second"]["totalDecodingLoops"]
/ data["tokens_per_second"]["timeElapsed"],
2,
),
"dataset_speed": {
dataset: round(
speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2
)
for dataset, speed_info in data["dataset_speed"].items()
},
"dataset_tokens_per_second": {
dataset: round(
tps_info["totalDecodingLoops"] / tps_info["timeElapsed"], 2
)
for dataset, tps_info in data["dataset_tokens_per_second"].items()
},
"average_wer": compute_average_wer(data["average_wer"]),
"qoi": round(mean(data["qoi"]), 2),
"commit_hash": data["commit_hash"],
"commit_timestamp": data["commit_timestamp"],
}
json.dump(performance_entry, performance_file)
performance_file.write("\n")
return not_supported
def generate_support_matrix(performance_data_path="dashboard_data/performance_data.json", output_file="dashboard_data/support_data.csv"):
"""
Generate a support matrix CSV showing model compatibility across devices and OS versions.
✅: All tests passed
⚠️: Some tests failed
"""
support_matrix = defaultdict(lambda: defaultdict(lambda: {
"os_versions": set(),
"dataset_count": 0
}))
models = set()
devices = set()
# Process performance data
with open(performance_data_path, 'r') as f:
for line in f:
entry = json.loads(line)
model = entry["model"]
device = entry["device"]
os_info = entry["os"]
models.add(model)
devices.add(device)
support_matrix[model][device]["os_versions"].add(os_info)
if "dataset_speed" in entry:
support_matrix[model][device]["dataset_count"] = len(entry["dataset_speed"])
# Create DataFrame with correct headers
df = pd.DataFrame(columns=['', 'Model'] + [f'"{device}"' for device in sorted(devices)])
# Add each model with its data
for model in sorted(models):
row_data = {'': model, 'Model': model}
for device in sorted(devices):
info = support_matrix[model].get(device, {"dataset_count": 0, "os_versions": set()})
os_versions = ', '.join(sorted(info["os_versions"]))
if info["dataset_count"] == 0:
row_data[f'"{device}"'] = "Not Supported"
elif info["dataset_count"] >= 2:
row_data[f'"{device}"'] = f"✅ {os_versions}"
else:
row_data[f'"{device}"'] = f"⚠️ {os_versions}"
df = pd.concat([df, pd.DataFrame([row_data])], ignore_index=True)
# Save to CSV
df.to_csv(output_file, index=False)
def main():
"""
Main function to orchestrate the performance data generation process.
This function performs the following steps:
1. Downloads benchmark data if requested.
2. Fetches evaluation data for various datasets.
3. Processes benchmark files and summary files.
4. Calculates and saves performance and support results.
"""
source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset"
source_xcresult_subfolder = "benchmark_data/"
source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}"
if len(sys.argv) > 1 and sys.argv[1] == "download":
try:
shutil.rmtree(source_xcresult_repo)
except:
print("Nothing to remove.")
download_dataset(
source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder
)
datasets = {
"Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
}
dataset_dfs = {}
for dataset_name, url in datasets.items():
evals = fetch_evaluation_data(url)
dataset_dfs[dataset_name] = pd.json_normalize(evals["results"])
performance_results = defaultdict(
lambda: {
"average_wer": [],
"qoi": [],
"speed": {"inputAudioSeconds": 0, "fullPipeline": 0},
"tokens_per_second": {"totalDecodingLoops": 0, "timeElapsed": 0},
"dataset_speed": defaultdict(
lambda: {"inputAudioSeconds": 0, "fullPipeline": 0}
),
"dataset_tokens_per_second": defaultdict(
lambda: {"totalDecodingLoops": 0, "timeElapsed": 0}
),
"timestamp": None,
"commit_hash": None,
"commit_timestamp": None,
"test_timestamp": None,
}
)
with open("dashboard_data/device_map.json", "r") as f:
device_map = json.load(f)
for subdir, _, files in os.walk(source_xcresult_directory):
for filename in files:
file_path = os.path.join(subdir, filename)
if not filename.endswith(".json"):
continue
else:
process_benchmark_file(file_path, dataset_dfs, device_map, performance_results)
calculate_and_save_performance_results(
performance_results, "dashboard_data/performance_data.json"
)
generate_support_matrix()
if __name__ == "__main__":
main()