synthetic-data-generator / .env.template
daqc's picture
Add .env.template
9bc9bf6
raw
history blame
3.65 kB
# =============================================================================
# REQUIRED CONFIGURATION
# =============================================================================
# Hugging Face token with read/write permissions for repositories and inference API
# Get it from: https://huggingface.co/settings/tokens
HF_TOKEN=hg_...
# -----------------------------------------------------------------------------
# GENERATION SETTINGS
# -----------------------------------------------------------------------------
MAX_NUM_TOKENS=2048
MAX_NUM_ROWS=1000
DEFAULT_BATCH_SIZE=5
# Required for chat data generation with Llama or Qwen models
# Options: "llama3", "qwen2", or custom template string
#MAGPIE_PRE_QUERY_TEMPLATE=qwen2
# =============================================================================
# MODEL & SERVICES CONFIGURATION
# =============================================================================
# -----------------------------------------------------------------------------
# A. STANDALONE SETUP (No additional installation required)
# -----------------------------------------------------------------------------
# 1. HUGGING FACE SERVERLESS (Recommended default)
# Just requires HF_TOKEN
# MODEL=meta-llama/Llama-3.1-8B-Instruct
# MODEL=Qwen/Qwen2.5-1.5B-Instruct
# 2. ARGILLA ON HUGGING FACE SPACES (Recommended for data annotation)
# ARGILLA_API_URL=https://daqc-my-argilla.hf.space/
#ARGILLA_API_KEY=
# 3. OPENAI API
# Requires OpenAI API key
# OPENAI_BASE_URL=https://api.openai.com/v1/
# MODEL=gpt-4
# API_KEY=
# -----------------------------------------------------------------------------
# B. LOCAL SETUP (Requires local installation)
# -----------------------------------------------------------------------------
# 1. LOCAL OLLAMA
# Requires: Ollama installed (https://ollama.ai)
#OLLAMA_BASE_URL=http://127.0.0.1:11434/
#MODEL=qwen2.5:32b-instruct-q5_K_S
#TOKENIZER_ID=Qwen/Qwen2.5-32B-Instruct
# MODEL=deepseek-r1:1.5b
# TOKENIZER_ID=deepseek-r1:1.5b
# 2. LOCAL VLLM
# Requires: VLLM installed
# VLLM_BASE_URL=http://127.0.0.1:8000/
# MODEL=Qwen/Qwen2.5-1.5B-Instruct
# TOKENIZER_ID=Qwen/Qwen2.5-1.5B-Instruct
# 3. LOCAL TGI/ENDPOINTS
# Requires: Text Generation Inference installed
# HUGGINGFACE_BASE_URL=http://127.0.0.1:3000/
# TOKENIZER_ID=meta-llama/Llama-3.1-8B-Instruct
# -----------------------------------------------------------------------------
# C. DOCKER SETUP (Ready to use with docker-compose, recommended for full setup)
# -----------------------------------------------------------------------------
# 1. DOCKER OLLAMA
OLLAMA_BASE_URL=http://ollama:11434
# Options for OLLAMA_HARDWARE: latest (for CPU/NVIDIA), rocm (for AMD)
OLLAMA_HARDWARE=latest
# DEEPSEEK R1
#MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
#TOKENIZER_ID=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
#MAGPIE_PRE_QUERY_TEMPLATE= "<|begin▁of▁sentence|>User: " # use the custom template for the model
#LLAMA3.2
MODEL=llama3.2:1b # model for instruction generation
TOKENIZER_ID=meta-llama/Llama-3.2-1B-Instruct # tokenizer for instruction generation
MAGPIE_PRE_QUERY_TEMPLATE=llama3 # magpie template required for instruction generation
# 2. DOCKER ARGILLA (persistent data)
ARGILLA_API_URL=http://argilla:6900
ARGILLA_USERNAME=admin
ARGILLA_PASSWORD=admin1234
ARGILLA_API_KEY=admin.1234
ARGILLA_REINDEX_DATASET=1
# Usage:
#docker-compose --profile with-ollama --profile with-argilla build
#(open new terminal) docker-compose --profile with-ollama up -d
# docker-compose exec ollama ollama run llama3.2:1b
#docker-compose --profile with-ollama --profile with-argilla up -d