# ============================================================================= | |
# REQUIRED CONFIGURATION | |
# ============================================================================= | |
# Hugging Face token with read/write permissions for repositories and inference API | |
# Get it from: https://huggingface.co/settings/tokens | |
HF_TOKEN=hg_... | |
# ----------------------------------------------------------------------------- | |
# GENERATION SETTINGS | |
# ----------------------------------------------------------------------------- | |
MAX_NUM_TOKENS=2048 | |
MAX_NUM_ROWS=1000 | |
DEFAULT_BATCH_SIZE=5 | |
# Required for chat data generation with Llama or Qwen models | |
# Options: "llama3", "qwen2", or custom template string | |
#MAGPIE_PRE_QUERY_TEMPLATE=qwen2 | |
# ============================================================================= | |
# MODEL & SERVICES CONFIGURATION | |
# ============================================================================= | |
# ----------------------------------------------------------------------------- | |
# A. STANDALONE SETUP (No additional installation required) | |
# ----------------------------------------------------------------------------- | |
# 1. HUGGING FACE SERVERLESS (Recommended default) | |
# Just requires HF_TOKEN | |
# MODEL=meta-llama/Llama-3.1-8B-Instruct | |
# MODEL=Qwen/Qwen2.5-1.5B-Instruct | |
# 2. ARGILLA ON HUGGING FACE SPACES (Recommended for data annotation) | |
# ARGILLA_API_URL=https://daqc-my-argilla.hf.space/ | |
#ARGILLA_API_KEY= | |
# 3. OPENAI API | |
# Requires OpenAI API key | |
# OPENAI_BASE_URL=https://api.openai.com/v1/ | |
# MODEL=gpt-4 | |
# API_KEY= | |
# ----------------------------------------------------------------------------- | |
# B. LOCAL SETUP (Requires local installation) | |
# ----------------------------------------------------------------------------- | |
# 1. LOCAL OLLAMA | |
# Requires: Ollama installed (https://ollama.ai) | |
#OLLAMA_BASE_URL=http://127.0.0.1:11434/ | |
#MODEL=qwen2.5:32b-instruct-q5_K_S | |
#TOKENIZER_ID=Qwen/Qwen2.5-32B-Instruct | |
# MODEL=deepseek-r1:1.5b | |
# TOKENIZER_ID=deepseek-r1:1.5b | |
# 2. LOCAL VLLM | |
# Requires: VLLM installed | |
# VLLM_BASE_URL=http://127.0.0.1:8000/ | |
# MODEL=Qwen/Qwen2.5-1.5B-Instruct | |
# TOKENIZER_ID=Qwen/Qwen2.5-1.5B-Instruct | |
# 3. LOCAL TGI/ENDPOINTS | |
# Requires: Text Generation Inference installed | |
# HUGGINGFACE_BASE_URL=http://127.0.0.1:3000/ | |
# TOKENIZER_ID=meta-llama/Llama-3.1-8B-Instruct | |
# ----------------------------------------------------------------------------- | |
# C. DOCKER SETUP (Ready to use with docker-compose, recommended for full setup) | |
# ----------------------------------------------------------------------------- | |
# 1. DOCKER OLLAMA | |
OLLAMA_BASE_URL=http://ollama:11434 | |
# Options for OLLAMA_HARDWARE: latest (for CPU/NVIDIA), rocm (for AMD) | |
OLLAMA_HARDWARE=latest | |
# DEEPSEEK R1 | |
#MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | |
#TOKENIZER_ID=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | |
#MAGPIE_PRE_QUERY_TEMPLATE= "<|begin▁of▁sentence|>User: " # use the custom template for the model | |
#LLAMA3.2 | |
MODEL=llama3.2:1b # model for instruction generation | |
TOKENIZER_ID=meta-llama/Llama-3.2-1B-Instruct # tokenizer for instruction generation | |
MAGPIE_PRE_QUERY_TEMPLATE=llama3 # magpie template required for instruction generation | |
# 2. DOCKER ARGILLA (persistent data) | |
ARGILLA_API_URL=http://argilla:6900 | |
ARGILLA_USERNAME=admin | |
ARGILLA_PASSWORD=admin1234 | |
ARGILLA_API_KEY=admin.1234 | |
ARGILLA_REINDEX_DATASET=1 | |
# Usage: | |
#docker-compose --profile with-ollama --profile with-argilla build | |
#(open new terminal) docker-compose --profile with-ollama up -d | |
# docker-compose exec ollama ollama run llama3.2:1b | |
#docker-compose --profile with-ollama --profile with-argilla up -d |