File size: 7,916 Bytes
adc79ce
6a8a817
 
229dcf3
6a8a817
 
 
 
 
adc79ce
229dcf3
 
 
 
 
 
 
 
 
6a8a817
 
 
229dcf3
 
 
 
 
 
 
 
 
 
 
6a8a817
229dcf3
 
 
 
 
6a8a817
229dcf3
6a8a817
229dcf3
 
 
adc79ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229dcf3
adc79ce
 
 
 
 
229dcf3
 
adc79ce
 
 
6a8a817
 
 
 
 
adc79ce
288d796
6a8a817
 
 
 
 
adc79ce
6a8a817
 
229dcf3
 
 
 
6a8a817
 
adc79ce
229dcf3
6a8a817
229dcf3
 
 
 
 
6a8a817
 
 
229dcf3
 
 
 
6a8a817
229dcf3
 
 
 
 
6a8a817
 
229dcf3
6a8a817
229dcf3
6a8a817
 
 
 
 
 
229dcf3
6a8a817
229dcf3
6a8a817
 
 
229dcf3
 
 
 
6a8a817
229dcf3
6a8a817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229dcf3
6a8a817
 
 
 
 
 
229dcf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a8a817
 
229dcf3
 
 
 
 
 
 
 
 
 
6a8a817
229dcf3
6a8a817
 
229dcf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import List

import pandas as pd
from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks import (
    GenerateTextClassificationData,
    TextClassification,
    TextGeneration,
)

from src.distilabel_dataset_generator.pipelines.base import (
    MODEL,
    _get_next_api_key,
)

PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.

Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.

The prompt you write should follow the same style and structure as the following example prompts, clearly specifying the possible classification labels.

If a label is composed of multiple words, use a hyphen to separate them. For example, 'smartphone-review', 'customer-service', 'product-quality'.:

Classify the following customer review of a cinema as either 'positive' or 'negative'.

Classify the following news article into one or more of the following categories: 'politics', 'sports', 'technology', 'entertainment', 'health', 'business', 'environment', 'education', 'science', 'international'.

Determine the sentiment of the following social media post: 'ambiguous', 'sarcastic', 'informative', 'emotional'.

Identify the issue category for the following technical support ticket: 'billing', 'technical', 'account', 'shipping', 'returns', 'installation', 'subscription'.

Classify the following movie review into one of the following categories: 'critical', 'praise', 'disappointed', 'enthusiastic'.

Determine the level of customer satisfaction from the following customer service transcript: 'satisfied', 'dissatisfied', 'highly-satisfied', 'somewhat-dissatisfied', 'indifferent'.

Categorize the following product description into one of the following product types: 'smartphone', 'laptop', 'tablet', 'smartwatch', 'e-reader', 'headphones'.

Classify the following tweet as expressing either 'support' or 'opposition' to the political event discussed.

Classify the following restaurant review into one of the following categories: 'food-quality', 'service', 'ambiance', or 'price'.

Classify the following blog post based on its primary fashion trend or style: 'casual', 'formal', 'streetwear', 'vintage' or 'sustainable-fashion'.

User dataset description:
"""

DEFAULT_DATASET_DESCRIPTIONS = [
    "A dataset covering customer reviews for an e-commerce website.",
    "A dataset covering news articles about various topics.",
]

DEFAULT_DATASETS = [
    pd.DataFrame.from_dict(
        {
            "text": [
                "I love the product! It's amazing and I'll buy it again.",
                "The product was okay, but I wouldn't buy it again.",
            ],
            "label": ["positive", "negative"],
        }
    ),
    pd.DataFrame.from_dict(
        {
            "text": [
                "Yesterday, the US stock market had a significant increase.",
                "New research suggests that the Earth is not a perfect sphere.",
            ],
            "labels": [["economy", "politics"], ["science", "environment"]],
        }
    ),
]

DEFAULT_SYSTEM_PROMPTS = [
    "Classify the following customer review as either 'positive' or 'negative'.",
    "Classify the following news article into one of the following categories: 'politics', 'economy', 'environment', 'science', 'health'.",
]


from typing import List

MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"


def generate_pipeline_code(
    system_prompt: str,
    difficulty: str = None,
    clarity: str = None,
    labels: List[str] = None,
    num_labels: int = 1,
    num_rows: int = 10,
) -> str:
    labels = [label.lower().strip() for label in labels or []]
    base_code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts, KeepColumns
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}

MODEL = "{MODEL}"
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
os.environ["HF_TOKEN"] = (
    "hf_xxx"  # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
)

with Pipeline(name="textcat") as pipeline:

    task_generator = LoadDataFromDicts(data=[{{"task": TEXT_CLASSIFICATION_TASK}}])

    textcat_generation = GenerateTextClassificationData(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=os.environ["HF_TOKEN"],
            generation_kwargs={{
                "temperature": 0.8,
                "max_new_tokens": 2048,
            }},
        ),
        difficulty={None if difficulty == "mixed" else repr(difficulty)},
        clarity={None if clarity == "mixed" else repr(clarity)},
        num_generations={num_rows},
        output_mappings={{"input_text": "text"}},
    )
    """

    if num_labels == 1:
        return (
            base_code
            + """
    keep_columns = KeepColumns(
        columns=["text", "label"],
    )

    # Connect steps in the pipeline
    task_generator >> textcat_generation >> keep_columns

    if __name__ == "__main__":
        distiset = pipeline.run()
    """
        )

    return (
        base_code
        + f"""
    keep_columns = KeepColumns(
        columns=["text"],
    )

    textcat_labeller = TextClassification(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=os.environ["HF_TOKEN"],
            generation_kwargs={{
                "temperature": 0.8,
                "max_new_tokens": 2048,
            }},
        ),
        n={num_labels},
        available_labels={labels},
        context=TEXT_CLASSIFICATION_TASK,
        default_label="unknown"
    )

    task_generator >> textcat_generation >> keep_columns >> textcat_labeller

    if __name__ == "__main__":
        distiset = pipeline.run()
    """
    )


def get_textcat_generator(difficulty, clarity, is_sample):
    textcat_generator = GenerateTextClassificationData(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=_get_next_api_key(),
            generation_kwargs={
                "temperature": 0.8,
                "max_new_tokens": 256 if is_sample else 1024,
            },
        ),
        difficulty=None if difficulty == "mixed" else difficulty,
        clarity=None if clarity == "mixed" else clarity,
    )
    textcat_generator.load()
    return textcat_generator


def get_labeller_generator(system_prompt, labels, num_labels, is_sample):
    labels = [label.lower().strip() for label in labels]
    labeller_generator = TextClassification(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=_get_next_api_key(),
            generation_kwargs={
                "temperature": 0.8,
                "max_new_tokens": 256 if is_sample else 1024,
            },
        ),
        context=system_prompt,
        available_labels=labels,
        n=num_labels,
        default_label="unknown",
    )
    labeller_generator.load()
    return labeller_generator


def get_prompt_generator():
    prompt_generator = TextGeneration(
        llm=InferenceEndpointsLLM(
            api_key=_get_next_api_key(),
            model_id=MODEL,
            tokenizer_id=MODEL,
            generation_kwargs={
                "temperature": 0.8,
                "max_new_tokens": 2048,
                "do_sample": True,
            },
        ),
        use_system_prompt=True,
    )
    prompt_generator.load()
    return prompt_generator