import streamlit as st import pandas import torch from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image from transformers import AutoProcessor, AutoModelForImageTextToText # Load the model and processor model_id = "brucewayne0459/paligemma_derm" processor_chat = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") model_chat = AutoModelForImageTextToText.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") processor = AutoProcessor.from_pretrained(model_id) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) model.eval() # Set device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Add Hugging Face logo at the top st.markdown( """ """, unsafe_allow_html=True, ) # Streamlit app title and instructions st.title("Skin Condition Identifier") st.write("Upload an image and provide a text prompt to identify the skin condition.") # Column layout for input and display col1, col2 = st.columns([3, 2]) with col1: # File uploader for image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) prompt = "Identify the skin condition?" # Text input for prompt input_text = st.text_input("Enter your prompt:", prompt) with col2: # Display uploaded image (if any) if uploaded_file: input_image = Image.open(uploaded_file).convert("RGB") # Resize image for display (300x300 pixels) resized_image = input_image.resize((300, 300)) # Display the resized image st.image(resized_image, caption="Uploaded Image (300x300)", use_container_width=True) # Process and display the result when the button is clicked if uploaded_file and st.button("Analyze"): if not input_text.strip(): st.error("Please provide a valid prompt!") else: try: # Resize image for processing (512x512 pixels) max_size = (512, 512) input_image = input_image.resize(max_size) # Prepare inputs with st.spinner("Processing..."): inputs = processor( text=input_text, images=input_image, return_tensors="pt", padding="longest" ).to(device) # Generate output with default max_new_tokens default_max_tokens = 50 # Set a default value for max tokens with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=default_max_tokens) # Decode output decoded_output = processor.decode(outputs[0], skip_special_tokens=True) # Display result st.success("Analysis Complete!") st.write("**Model Output:**", decoded_output) except Exception as e: st.error(f"Error: {str(e)}")