Spaces:
Running
Running
File size: 3,413 Bytes
5a6aade 935d5c9 5a6aade e8c1089 5a6aade e8c1089 5a6aade 25835df 5a6aade 11666df 5a6aade 39a7b7a 5a6aade 39a7b7a e8c1089 39a7b7a e8c1089 39a7b7a caae7d4 3c0f272 caae7d4 39a7b7a 3c0f272 39a7b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import streamlit as st
import pandas
import torch
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText
# Load the model and processor
model_id = "brucewayne0459/paligemma_derm"
processor_chat = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
model_chat = AutoModelForImageTextToText.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model.eval()
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Add Hugging Face logo at the top
st.markdown(
"""
<style>
.huggingface-logo {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.huggingface-logo img {
width: 150px;
}
</style>
<div class="huggingface-logo">
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Hugging Face Logo">
</div>
""",
unsafe_allow_html=True,
)
# Streamlit app title and instructions
st.title("Skin Condition Identifier")
st.write("Upload an image and provide a text prompt to identify the skin condition.")
# Column layout for input and display
col1, col2 = st.columns([3, 2])
with col1:
# File uploader for image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
prompt = "Identify the skin condition?"
# Text input for prompt
input_text = st.text_input("Enter your prompt:", prompt)
with col2:
# Display uploaded image (if any)
if uploaded_file:
input_image = Image.open(uploaded_file).convert("RGB")
# Resize image for display (300x300 pixels)
resized_image = input_image.resize((300, 300))
# Display the resized image
st.image(resized_image, caption="Uploaded Image (300x300)", use_container_width=True)
# Process and display the result when the button is clicked
if uploaded_file and st.button("Analyze"):
if not input_text.strip():
st.error("Please provide a valid prompt!")
else:
try:
# Resize image for processing (512x512 pixels)
max_size = (512, 512)
input_image = input_image.resize(max_size)
# Prepare inputs
with st.spinner("Processing..."):
inputs = processor(
text=input_text,
images=input_image,
return_tensors="pt",
padding="longest"
).to(device)
# Generate output with default max_new_tokens
default_max_tokens = 50 # Set a default value for max tokens
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=default_max_tokens)
# Decode output
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
# Display result
st.success("Analysis Complete!")
st.write("**Model Output:**", decoded_output)
except Exception as e:
st.error(f"Error: {str(e)}")
|