Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
# Load the text classification model
|
5 |
classifier = pipeline('text-classification', model='ardavey/bert-base-ai-generated-text')
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Define a function for text classification
|
8 |
def classify_text(text):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Create a Gradio interface
|
15 |
interface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
|
4 |
# Load the text classification model
|
5 |
classifier = pipeline('text-classification', model='ardavey/bert-base-ai-generated-text')
|
6 |
|
7 |
+
# Load the tokenizer to handle text preprocessing
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('ardavey/bert-base-ai-generated-text')
|
9 |
+
|
10 |
+
# Define a function to truncate or split the input text
|
11 |
+
def preprocess_long_text(text, tokenizer, max_length=512):
|
12 |
+
# Tokenize the text
|
13 |
+
tokens = tokenizer.encode(text, add_special_tokens=True)
|
14 |
+
# Split into chunks of max_length
|
15 |
+
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
|
16 |
+
# Decode back to text
|
17 |
+
return [tokenizer.decode(chunk, skip_special_tokens=True) for chunk in chunks]
|
18 |
+
|
19 |
# Define a function for text classification
|
20 |
def classify_text(text):
|
21 |
+
# Preprocess the text for long input
|
22 |
+
chunks = preprocess_long_text(text, tokenizer)
|
23 |
+
|
24 |
+
# Make predictions for each chunk
|
25 |
+
predictions = [classifier(chunk)[0] for chunk in chunks]
|
26 |
+
|
27 |
+
# Aggregate results (you can customize this logic)
|
28 |
+
ai_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_1']
|
29 |
+
human_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_0']
|
30 |
+
|
31 |
+
# Determine the overall prediction
|
32 |
+
if sum(ai_scores) > sum(human_scores):
|
33 |
+
label = "AI Generated Text"
|
34 |
+
score = sum(ai_scores) / len(ai_scores)
|
35 |
+
else:
|
36 |
+
label = "Human Generated Text"
|
37 |
+
score = sum(human_scores) / len(human_scores)
|
38 |
+
|
39 |
+
return f"Prediction: {label}, Average Score: {score:.4f}"
|
40 |
|
41 |
# Create a Gradio interface
|
42 |
interface = gr.Interface(
|