Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,41 @@
|
|
| 1 |
import transformers
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
from typing import Dict, List, Tuple
|
| 6 |
import spaces
|
| 7 |
-
import librosa
|
| 8 |
-
import soundfile as sf
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
return transformers.pipeline(
|
| 16 |
-
model=MODEL_NAME,
|
| 17 |
-
trust_remote_code=True,
|
| 18 |
-
device=0,
|
| 19 |
-
torch_dtype=torch.bfloat16
|
| 20 |
-
)
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
{'role': 'user', 'content': prompt}
|
| 28 |
-
]
|
| 29 |
|
| 30 |
-
@spaces.GPU(duration=120)
|
| 31 |
-
def transcribe_and_respond(audio_input: Tuple[int, np.ndarray]) -> str:
|
| 32 |
-
try:
|
| 33 |
-
# Unpack the audio input
|
| 34 |
-
sample_rate, audio = audio_input
|
| 35 |
-
|
| 36 |
-
# Ensure audio is float32
|
| 37 |
-
if audio.dtype != np.float32:
|
| 38 |
-
audio = audio.astype(np.float32)
|
| 39 |
-
|
| 40 |
-
if sample_rate != SAMPLE_RATE:
|
| 41 |
-
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=SAMPLE_RATE)
|
| 42 |
-
|
| 43 |
-
# Convert the audio to WAV format
|
| 44 |
-
wav_data = librosa.util.buf_to_float(audio, n_bytes=2)
|
| 45 |
-
sf.write('temp_audio.wav', wav_data, SAMPLE_RATE)
|
| 46 |
-
|
| 47 |
-
# Prepare the inputs for the model
|
| 48 |
-
turns = create_conversation_turns("")
|
| 49 |
-
inputs = {
|
| 50 |
-
'audio': wav_data,
|
| 51 |
-
'turns': turns,
|
| 52 |
-
'sampling_rate': SAMPLE_RATE
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS)
|
| 56 |
-
|
| 57 |
-
return response
|
| 58 |
except Exception as e:
|
| 59 |
-
return f"Error
|
| 60 |
|
| 61 |
iface = gr.Interface(
|
| 62 |
fn=transcribe_and_respond,
|
| 63 |
-
inputs=gr.Audio(
|
| 64 |
-
outputs="text",
|
| 65 |
-
title="Live
|
| 66 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
| 67 |
-
live=True
|
| 68 |
)
|
| 69 |
|
| 70 |
-
# Launch the app
|
| 71 |
if __name__ == "__main__":
|
| 72 |
iface.launch()
|
|
|
|
| 1 |
import transformers
|
| 2 |
import gradio as gr
|
| 3 |
+
import librosa
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
import spaces
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
@spaces.GPU(duration=120)
|
| 8 |
+
def transcribe_and_respond(audio_file):
|
| 9 |
+
try:
|
| 10 |
+
pipe = transformers.pipeline(
|
| 11 |
+
model='sarvamai/shuka_v1',
|
| 12 |
+
trust_remote_code=True,
|
| 13 |
+
device=0,
|
| 14 |
+
torch_dtype=torch.bfloat16
|
| 15 |
+
)
|
| 16 |
|
| 17 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
turns = [
|
| 20 |
+
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
| 21 |
+
{'role': 'user', 'content': ''}
|
| 22 |
+
]
|
| 23 |
|
| 24 |
+
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
| 25 |
+
|
| 26 |
+
return output
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
+
return f"Error: {str(e)}"
|
| 30 |
|
| 31 |
iface = gr.Interface(
|
| 32 |
fn=transcribe_and_respond,
|
| 33 |
+
inputs=gr.Audio(source="microphone", type="filepath"), # Accept audio input from microphone
|
| 34 |
+
outputs="text", # Output as text
|
| 35 |
+
title="Live Transcription and Response",
|
| 36 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
| 37 |
+
live=True # Enable live processing
|
| 38 |
)
|
| 39 |
|
|
|
|
| 40 |
if __name__ == "__main__":
|
| 41 |
iface.launch()
|