Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import transformers
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
from typing import Dict, List
|
6 |
import spaces
|
7 |
|
8 |
# Constants
|
@@ -11,12 +11,15 @@ SAMPLE_RATE = 16000
|
|
11 |
MAX_NEW_TOKENS = 256
|
12 |
|
13 |
# Load the pipeline
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
|
22 |
return [
|
@@ -25,17 +28,25 @@ def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
|
|
25 |
]
|
26 |
|
27 |
@spaces.GPU(duration=120)
|
28 |
-
def transcribe_and_respond(
|
29 |
try:
|
|
|
|
|
|
|
30 |
# Ensure audio is float32
|
31 |
if audio.dtype != np.float32:
|
32 |
audio = audio.astype(np.float32)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Create input for the pipeline
|
35 |
turns = create_conversation_turns("<|audio|>")
|
36 |
inputs = {
|
37 |
'audio': audio,
|
38 |
'turns': turns,
|
|
|
39 |
}
|
40 |
|
41 |
# Generate response
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from typing import Dict, List, Tuple
|
6 |
import spaces
|
7 |
|
8 |
# Constants
|
|
|
11 |
MAX_NEW_TOKENS = 256
|
12 |
|
13 |
# Load the pipeline
|
14 |
+
def load_pipeline():
|
15 |
+
return transformers.pipeline(
|
16 |
+
model=MODEL_NAME,
|
17 |
+
trust_remote_code=True,
|
18 |
+
device=0,
|
19 |
+
torch_dtype=torch.bfloat16
|
20 |
+
)
|
21 |
+
|
22 |
+
pipe = load_pipeline()
|
23 |
|
24 |
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
|
25 |
return [
|
|
|
28 |
]
|
29 |
|
30 |
@spaces.GPU(duration=120)
|
31 |
+
def transcribe_and_respond(audio_input: Tuple[int, np.ndarray]) -> str:
|
32 |
try:
|
33 |
+
# Unpack the audio input
|
34 |
+
sample_rate, audio = audio_input
|
35 |
+
|
36 |
# Ensure audio is float32
|
37 |
if audio.dtype != np.float32:
|
38 |
audio = audio.astype(np.float32)
|
39 |
|
40 |
+
# Resample if necessary
|
41 |
+
if sample_rate != SAMPLE_RATE:
|
42 |
+
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=SAMPLE_RATE)
|
43 |
+
|
44 |
# Create input for the pipeline
|
45 |
turns = create_conversation_turns("<|audio|>")
|
46 |
inputs = {
|
47 |
'audio': audio,
|
48 |
'turns': turns,
|
49 |
+
'sampling_rate': SAMPLE_RATE
|
50 |
}
|
51 |
|
52 |
# Generate response
|