shuka_demo / app.py
archit11's picture
Update app.py
e48e518 verified
raw
history blame
2.04 kB
import transformers
import gradio as gr
import librosa
import torch
import spaces
import numpy as np
# Maintain conversation history globally
conversation_history = []
@spaces.GPU(duration=15)
def transcribe_and_respond(audio_file, chat_history):
try:
pipe = transformers.pipeline(
model='sarvamai/shuka_v1',
trust_remote_code=True,
device=0,
torch_dtype=torch.bfloat16
)
# Load the audio file
audio, sr = librosa.load(audio_file, sr=16000)
# Print audio properties for debugging
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
# Prepare conversation turns
turns = chat_history.copy() # Take existing chat history
# Add the audio to the current turn
turns.append({'role': 'user', 'content': '<|audio|>'})
# Debug: Print the updated turns
print(f"Updated turns: {turns}")
# Call the model with the updated conversation turns and audio
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
# Append the model's response to the chat history
turns.append({'role': 'system', 'content': output})
# Debug: Print the model's response
print(f"Model output: {output}")
return turns, turns # Return updated history to display
except Exception as e:
return f"Error: {str(e)}"
# Chat interface setup
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=[gr.Audio(sources="microphone", type="filepath", label="Your Audio (Microphone)"), gr.Chatbot(label="Conversation")],
outputs=gr.Chatbot(label="Conversation"),
title="πŸŽ™οΈ AI Chat with Live Transcription",
description="Talk to the AI through your microphone, and it will respond conversationally based on the ongoing chat. Keep the conversation going!",
live=True,
allow_flagging="auto",
enable_queue=True
)
if __name__ == "__main__":
iface.launch()