File size: 7,888 Bytes
56fb754
 
 
5603cf0
56fb754
 
 
 
71bc219
56fb754
5603cf0
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a7ef2
 
56fb754
 
 
 
 
5603cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fb754
 
 
 
 
 
 
 
5603cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e8c19
56fb754
e1e8c19
 
56fb754
 
 
 
 
 
 
5603cf0
56fb754
e1e8c19
56fb754
5603cf0
56fb754
 
 
 
 
 
 
5603cf0
 
 
 
 
 
 
 
 
 
56fb754
 
 
5603cf0
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5603cf0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
from threading import Thread
from typing import Iterator, List, Tuple
import json

import gradio as gr
import spaces
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from flask import Flask, request, jsonify

DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Compare two language models using Hugging Face's Zero GPU initiative.
Select two different models from the dropdowns and see how they perform on the same input.
"""

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

MODEL_OPTIONS = [
    "sarvamai/OpenHathi-7B-Hi-v0.1-Base",
    "TokenBender/Navarna_v0_1_OpenHermes_Hindi"
]

models = {}
tokenizers = {}

# Custom chat templates
MISTRAL_TEMPLATE = """<s>[INST] {instruction} [/INST]
{response}
</s>
<s>[INST] {instruction} [/INST]
"""

LLAMA_TEMPLATE = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>

{instruction} [/INST]
{response}
</s>
<s>[INST] {instruction} [/INST]
"""

for model_id in MODEL_OPTIONS:
    tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
    models[model_id] = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        load_in_8bit=True,
    )
    models[model_id].eval()
    
    # Set custom chat templates
    if "Navarna" in model_id:
        tokenizers[model_id].chat_template = MISTRAL_TEMPLATE
    elif "OpenHathi" in model_id:
        tokenizers[model_id].chat_template = LLAMA_TEMPLATE

# Initialize Flask app
app = Flask(__name__)

@app.route('/log', methods=['POST'])
def log_results():
    data = request.json
    # Here you can implement any additional processing or storage logic
    print("Logged:", json.dumps(data, indent=2))
    return jsonify({"status": "success"}), 200

@spaces.GPU(duration=90)
def generate(
    model_id: str,
    message: str,
    chat_history: List[Tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.7,
    top_p: float = 0.95,
) -> Iterator[str]:
    model = models[model_id]
    tokenizer = tokenizers[model_id]

    conversation = []
    for user, assistant in chat_history:
        conversation.extend([
            {"role": "user", "content": user},
            {"role": "assistant", "content": assistant},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

def compare_models(
    model1_name: str,
    model2_name: str,
    message: str,
    chat_history1: List[Tuple[str, str]],
    chat_history2: List[Tuple[str, str]],
    max_new_tokens: int,
    temperature: float,
    top_p: float,
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
    if model1_name == model2_name:
        error_message = [("System", "Error: Please select two different models.")]
        return error_message, error_message, chat_history1, chat_history2

    output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
    output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))

    chat_history1.append((message, output1))
    chat_history2.append((message, output2))

    log_comparison(model1_name, model2_name, message, output1, output2)

    return chat_history1, chat_history2, chat_history1, chat_history2

def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
    log_data = {
        "question": question,
        "model1": {"name": model1_name, "answer": answer1},
        "model2": {"name": model2_name, "answer": answer2},
        "winner": winner
    }
    
    # Send log data to Flask server
    import requests
    try:
        response = requests.post('http://144.24.151.32:5000/log', json=log_data)
        if response.status_code == 200:
            print("Successfully logged to server")
        else:
            print(f"Failed to log to server. Status code: {response.status_code}")
    except requests.RequestException as e:
        print(f"Error sending log to server: {e}")

def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
    winner = model1_name if choice == "Model 1" else model2_name
    log_comparison(model1_name, model2_name, question, answer1, answer2, winner)
    return f"You voted that {winner} performs better. This has been logged."

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
            chatbot1 = gr.Chatbot(label="Model 1 Output")
        with gr.Column():
            model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
            chatbot2 = gr.Chatbot(label="Model 2 Output")
    
    text_input = gr.Textbox(label="Input Text", lines=3)
    
    with gr.Row():
        max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
        temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
    
    compare_btn = gr.Button("Compare Models")
    
    with gr.Row():
        better1_btn = gr.Button("Model 1 is Better")
        better2_btn = gr.Button("Model 2 is Better")

    vote_output = gr.Textbox(label="Voting Result")

    compare_btn.click(
        compare_models,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
        outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
    )
    
    better1_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
        outputs=[vote_output]
    )
    
    better2_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
        outputs=[vote_output]
    )

if __name__ == "__main__":
    # Start Flask server in a separate thread
    flask_thread = Thread(target=app.run, kwargs={"host": "0.0.0.0", "port": 5000})
    flask_thread.start()
    
    # Start Gradio app
    demo.queue(max_size=10).launch()