Spaces:
Sleeping
Sleeping
File size: 7,888 Bytes
56fb754 5603cf0 56fb754 71bc219 56fb754 5603cf0 56fb754 f4a7ef2 56fb754 5603cf0 56fb754 5603cf0 56fb754 e1e8c19 56fb754 e1e8c19 56fb754 5603cf0 56fb754 e1e8c19 56fb754 5603cf0 56fb754 5603cf0 56fb754 5603cf0 56fb754 5603cf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
from threading import Thread
from typing import Iterator, List, Tuple
import json
import gradio as gr
import spaces
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from flask import Flask, request, jsonify
DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Compare two language models using Hugging Face's Zero GPU initiative.
Select two different models from the dropdowns and see how they perform on the same input.
"""
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MODEL_OPTIONS = [
"sarvamai/OpenHathi-7B-Hi-v0.1-Base",
"TokenBender/Navarna_v0_1_OpenHermes_Hindi"
]
models = {}
tokenizers = {}
# Custom chat templates
MISTRAL_TEMPLATE = """<s>[INST] {instruction} [/INST]
{response}
</s>
<s>[INST] {instruction} [/INST]
"""
LLAMA_TEMPLATE = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
{instruction} [/INST]
{response}
</s>
<s>[INST] {instruction} [/INST]
"""
for model_id in MODEL_OPTIONS:
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
models[model_id] = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True,
)
models[model_id].eval()
# Set custom chat templates
if "Navarna" in model_id:
tokenizers[model_id].chat_template = MISTRAL_TEMPLATE
elif "OpenHathi" in model_id:
tokenizers[model_id].chat_template = LLAMA_TEMPLATE
# Initialize Flask app
app = Flask(__name__)
@app.route('/log', methods=['POST'])
def log_results():
data = request.json
# Here you can implement any additional processing or storage logic
print("Logged:", json.dumps(data, indent=2))
return jsonify({"status": "success"}), 200
@spaces.GPU(duration=90)
def generate(
model_id: str,
message: str,
chat_history: List[Tuple[str, str]],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.7,
top_p: float = 0.95,
) -> Iterator[str]:
model = models[model_id]
tokenizer = tokenizers[model_id]
conversation = []
for user, assistant in chat_history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def compare_models(
model1_name: str,
model2_name: str,
message: str,
chat_history1: List[Tuple[str, str]],
chat_history2: List[Tuple[str, str]],
max_new_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
if model1_name == model2_name:
error_message = [("System", "Error: Please select two different models.")]
return error_message, error_message, chat_history1, chat_history2
output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))
chat_history1.append((message, output1))
chat_history2.append((message, output2))
log_comparison(model1_name, model2_name, message, output1, output2)
return chat_history1, chat_history2, chat_history1, chat_history2
def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
log_data = {
"question": question,
"model1": {"name": model1_name, "answer": answer1},
"model2": {"name": model2_name, "answer": answer2},
"winner": winner
}
# Send log data to Flask server
import requests
try:
response = requests.post('http://144.24.151.32:5000/log', json=log_data)
if response.status_code == 200:
print("Successfully logged to server")
else:
print(f"Failed to log to server. Status code: {response.status_code}")
except requests.RequestException as e:
print(f"Error sending log to server: {e}")
def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
winner = model1_name if choice == "Model 1" else model2_name
log_comparison(model1_name, model2_name, question, answer1, answer2, winner)
return f"You voted that {winner} performs better. This has been logged."
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
chatbot1 = gr.Chatbot(label="Model 1 Output")
with gr.Column():
model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
chatbot2 = gr.Chatbot(label="Model 2 Output")
text_input = gr.Textbox(label="Input Text", lines=3)
with gr.Row():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
compare_btn = gr.Button("Compare Models")
with gr.Row():
better1_btn = gr.Button("Model 1 is Better")
better2_btn = gr.Button("Model 2 is Better")
vote_output = gr.Textbox(label="Voting Result")
compare_btn.click(
compare_models,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
)
better1_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
outputs=[vote_output]
)
better2_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
outputs=[vote_output]
)
if __name__ == "__main__":
# Start Flask server in a separate thread
flask_thread = Thread(target=app.run, kwargs={"host": "0.0.0.0", "port": 5000})
flask_thread.start()
# Start Gradio app
demo.queue(max_size=10).launch() |