Spaces:
Sleeping
Sleeping
File size: 7,757 Bytes
56fb754 fab8cb4 56fb754 22ff5cb 56fb754 fa811ea 56fb754 fa811ea 56fb754 fa811ea 56fb754 fa811ea 56fb754 f4a7ef2 56fb754 fa811ea 56fb754 22ff5cb 5603cf0 fa811ea fab8cb4 a3db774 fa811ea 22ff5cb fa811ea 56fb754 fa811ea 56fb754 a3db774 56fb754 22ff5cb 56fb754 fa811ea 56fb754 e1e8c19 56fb754 e1e8c19 56fb754 22ff5cb 56fb754 22ff5cb 56fb754 22ff5cb 56fb754 22ff5cb 56fb754 fa811ea 56fb754 5603cf0 56fb754 fa811ea 56fb754 fa811ea 56fb754 fa811ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import requests
import gradio as gr
import torch
import spaces
from threading import Thread
from typing import Iterator, List, Tuple
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Description for the Gradio Interface
DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Select two different models from the dropdowns and see how they perform on the same input.
"""
# Constants
MAX_MAX_NEW_TOKENS = 256
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Model options
MODEL_OPTIONS = [
"sarvamai/OpenHathi-7B-Hi-v0.1-Base",
"TokenBender/Navarna_v0_1_OpenHermes_Hindi"
]
# Load models and tokenizers
models = {}
tokenizers = {}
for model_id in MODEL_OPTIONS:
try:
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
models[model_id] = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True,
)
models[model_id].eval()
# Set pad_token_id to eos_token_id if it's not set
if tokenizers[model_id].pad_token_id is None:
tokenizers[model_id].pad_token_id = tokenizers[model_id].eos_token_id
except Exception as e:
print(f"Error loading model {model_id}: {e}")
# Function to log comparisons
def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
log_data = {
"question": question,
"model1": {"name": model1_name, "answer": answer1},
"model2": {"name": model2_name, "answer": answer2},
"winner": winner
}
try:
response = requests.post('http://144.24.151.32:5000/log', json=log_data, timeout=5)
if response.status_code == 200:
print("Successfully logged to server")
else:
print(f"Failed to log to server. Status code: {response.status_code}")
except requests.RequestException as e:
print(f"Error sending log to server: {e}")
# Function to prepare input
def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]):
tokenizer = tokenizers[model_id]
try:
inputs = tokenizer(
[x[1] for x in chat_history] + [message],
return_tensors="pt",
truncation=True,
padding=True,
max_length=MAX_INPUT_TOKEN_LENGTH,
)
except Exception as e:
print(f"Error preparing input for model {model_id}: {e}")
inputs = tokenizer([message], return_tensors="pt", padding=True, max_length=MAX_INPUT_TOKEN_LENGTH)
return inputs
# Function to generate responses from models
@spaces.GPU(duration=120)
def generate(
model_id: str,
message: str,
chat_history: List[Tuple[str, str]],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.4,
top_p: float = 0.95,
) -> Iterator[str]:
model = models[model_id]
tokenizer = tokenizers[model_id]
inputs = prepare_input(model_id, message, chat_history)
input_ids = inputs.input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
try:
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
except Exception as e:
print(f"Error generating response from model {model_id}: {e}")
yield "Error generating response."
# Function to compare two models
def compare_models(
model1_name: str,
model2_name: str,
message: str,
chat_history1: List[Tuple[str, str]],
chat_history2: List[Tuple[str, str]],
max_new_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
if model1_name == model2_name:
error_message = [("System", "Error: Please select two different models.")]
return error_message, error_message, chat_history1, chat_history2
try:
output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))
chat_history1.append((message, output1))
chat_history2.append((message, output2))
log_comparison(model1_name, model2_name, message, output1, output2)
return chat_history1, chat_history2, chat_history1, chat_history2
except Exception as e:
print(f"Error comparing models: {e}")
error_message = [("System", "Error comparing models.")]
return error_message, error_message, chat_history1, chat_history2
# Function to log the voting result
def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
winner = model1_name if choice == "Model 1" else model2_name
log_comparison(model1_name, model2_name, question, answer1, answer2, winner)
return f"You voted that {winner} performs better. This has been logged."
# Gradio UI setup
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
chatbot1 = gr.Chatbot(label="Model 1 Output")
with gr.Column():
model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
chatbot2 = gr.Chatbot(label="Model 2 Output")
text_input = gr.Textbox(label="Input Text", lines=3)
with gr.Row():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
compare_btn = gr.Button("Compare Models")
with gr.Row():
better1_btn = gr.Button("Model 1 is Better")
better2_btn = gr.Button("Model 2 is Better")
vote_output = gr.Textbox(label="Voting Result")
compare_btn.click(
compare_models,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
)
better1_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
outputs=[vote_output]
)
better2_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
outputs=[vote_output]
)
# Main function to run the Gradio app
if __name__ == "__main__":
demo.queue(max_size=3).launch(share=True)
|