File size: 5,738 Bytes
a59cdce
 
 
 
dcf5029
a59cdce
 
 
dcf5029
a59cdce
 
 
 
 
 
dcf5029
 
 
 
 
a59cdce
 
 
 
 
 
 
 
 
 
dcf5029
a59cdce
dcf5029
 
a59cdce
 
 
dcf5029
 
 
a59cdce
dcf5029
 
 
 
 
 
 
 
 
a59cdce
 
 
 
 
dcf5029
 
a59cdce
dcf5029
a59cdce
 
dcf5029
 
 
 
 
 
 
a59cdce
 
 
 
 
dcf5029
 
a59cdce
dcf5029
 
 
ecd62fd
dcf5029
 
a59cdce
 
dcf5029
a59cdce
dcf5029
 
 
 
 
 
 
a59cdce
 
 
 
 
 
dcf5029
a59cdce
 
 
dcf5029
 
 
13a0ef1
dcf5029
 
a59cdce
dcf5029
a59cdce
 
 
 
 
 
 
 
 
 
dcf5029
a59cdce
 
 
 
 
 
 
 
 
dcf5029
 
 
 
 
a59cdce
 
 
 
dcf5029
a59cdce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a14d3d
 
 
 
a59cdce
 
 
dcf5029
a59cdce
dcf5029
a59cdce
dcf5029
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

# Define constants and configuration
MODEL_LIST = ["mistralai/mathstral-7B-v0.1"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")

PLACEHOLDER = """
<center>
<p>MathΣtral - Your Math advisor</p>
<p>Hi! I'm MisMath. A Math advisor. My model is based on mathstral-7B-v0.1. Feel free to ask your questions</p>
<p>Mathstral 7B is a model specializing in mathematical and scientific tasks, based on Mistral 7B.</p>
<p>mathstral-7B-v0.1 is the first Mathstral model</p>
<img src="Mistral.png" alt="MathStral Model" style="width:300px;height:200px;">
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h1 {
    text-align: center;
    font-size: 2em;
    color: #333;
}
"""

TITLE = "<h1><center>MathΣtral - Your Math advisor</center></h1>"

device = "cuda"  # for GPU usage or "cpu" for CPU usage

# Configuration for model quantization
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

# Define the chat streaming function
@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float = 0.8,
    max_new_tokens: int = 1024,
    top_p: float = 1.0,
    top_k: int = 20,
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    # Prepare the conversation context
    conversation_text = system_prompt + "\n"
    for prompt, answer in history:
        conversation_text += f"User: {prompt}\nAssistant: {answer}\n"

    conversation_text += f"User: {message}\nAssistant:"

    # Tokenize the conversation text
    input_ids = tokenizer(conversation_text, return_tensors="pt").input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        # Clean the buffer to remove unwanted prefixes
        cleaned_text = buffer.split("Assistant:")[-1].strip()
        yield cleaned_text

# Define the Gradio chatbot component
chatbot = gr.Chatbot(height=500, placeholder=PLACEHOLDER)

# Define the footer with links
footer = """
<div style="text-align: center; margin-top: 20px;">
    <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
    <a href="https://github.com/arad1367" target="_blank">GitHub</a> |
    <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a>
    <br>
    Made with 💖 by Pejman Ebrahimi
</div>
"""

# Create and launch the Gradio interface
with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are a helpful assistant for Math questions and complex calculations and programming and your name is MisMath",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Can you explain the Pythagorean theorem?"],
            ["What is the derivative of sin(x)?"],
            ["Solve the integral of e^(2x) dx."],
            ["How does quantum entanglement work?"],
        ],
        cache_examples=False,
    )
    gr.HTML(footer)

# Launch the application
if __name__ == "__main__":
    demo.launch()