########################################################################################################### # Adapted from https://github.com/TheAgentCompany/TheAgentCompany/blob/main/evaluation/summarise_results.py ########################################################################################################### import glob import json import os import re import sys from typing import Dict, Tuple def calculate_cost(model: str, prompt_tokens: int, completion_tokens: int) -> float: """ Calculate the cost of the model call. """ if 'claude-3-5-sonnet' in model.lower(): # https://www.anthropic.com/pricing#anthropic-api, accessed 12/11/2024 return 0.000003 * prompt_tokens + 0.000015 * completion_tokens elif 'gpt-4o' in model.lower(): # https://openai.com/api/pricing/, accessed 12/11/2024 return 0.0000025 * prompt_tokens + 0.00001 * completion_tokens elif 'gemini-1.5-pro' in model.lower(): # https://ai.google.dev/pricing#1_5pro, accessed 12/11/2024 # assuming prompts up to 128k tokens cost = 0.00000125 * prompt_tokens + 0.000005 * completion_tokens if prompt_tokens > 128000: cost *= 2 return cost elif 'gemini-2.0-flash-exp' in model.lower(): # price unknown for gemini-2.0-flash-exp, assuming same price as gemini-1.5-flash cost = 0.000000075 * prompt_tokens + 0.0000003 * completion_tokens if prompt_tokens > 128000: cost *= 2 return cost elif 'qwen2-72b' in model.lower(): # assuming hosted on Together # https://www.together.ai/pricing, accessed 12/11/2024 return 0.0000009 * (prompt_tokens + completion_tokens) elif 'qwen2p5-72b' in model.lower(): # assuming hosted on Together # https://www.together.ai/pricing, accessed 12/14/2024 return 0.0000012 * (prompt_tokens + completion_tokens) elif 'llama-v3p1-405b-instruct' in model.lower(): # assuming hosted on Fireworks AI # https://fireworks.ai/pricing, accessed 12/11/2024 return 0.000003 * (prompt_tokens + completion_tokens) elif 'llama-v3p1-70b-instruct' in model.lower(): # assuming hosted on Fireworks AI return 0.0000009 * (prompt_tokens + completion_tokens) elif 'llama-v3p3-70b-instruct' in model.lower(): # assuming hosted on Fireworks AI return 0.0000009 * (prompt_tokens + completion_tokens) elif 'amazon.nova-pro-v1:0' in model.lower(): # assuming hosted on Amazon Bedrock # https://aws.amazon.com/bedrock/pricing/, accessed 12/11/2024 return 0.0000008 * prompt_tokens + 0.0000032 * completion_tokens else: raise ValueError(f'Unknown model: {model}') def analyze_eval_json_file(filepath: str) -> Tuple[int, int]: """ Analyze a single eval JSON file and extract the total and result from final_score. Args: filepath: Path to the JSON file Returns: Tuple containing (total, result) from final_score """ try: with open(filepath, 'r') as f: data = json.load(f) final_score = data.get('final_score', {}) return (final_score.get('total', 0), final_score.get('result', 0)) except json.JSONDecodeError as e: print(f'Error decoding JSON in {filepath}: {e}') return (0, 0) except Exception as e: print(f'Error processing {filepath}: {e}') return (0, 0) def analyze_traj_json_file(filepath: str) -> Tuple[int, float]: """ Analyze a single trajectory JSON file and extract the steps and tokens for each step. Then estimate the cost based on the tokens and the model type. Note: this is assuming there's no prompt caching at all. """ steps: int = 0 cost: float = 0.0 with open(filepath, 'r') as f: data = json.load(f) response_id = None for action in data: if 'tool_call_metadata' in action: if action['tool_call_metadata']['model_response']['id'] != response_id: response_id = action['tool_call_metadata']['model_response']['id'] else: # openhands displays the same model response meta data multiple times, when # a single LLM call leads to multiple actions and observations. continue steps += 1 usage = action['tool_call_metadata']['model_response']['usage'] model: str = action['tool_call_metadata']['model_response']['model'] prompt_tokens = usage['prompt_tokens'] completion_tokens = usage['completion_tokens'] cost += calculate_cost(model, prompt_tokens, completion_tokens) return (steps, cost) def analyze_folder( folder_path: str, ) -> Tuple[Dict[str, Tuple[int, int]], Dict[str, Tuple[int, float]]]: """ Analyze all eval_*.json & traj_*.json files in the specified folder. Args: folder_path: Path to the folder containing JSON files Returns: dictionaries: - eval_results: Dictionary with filename as key and (total, result) tuple as value - traj_results: Dictionary with filename as key and (steps, cost) tuple as value """ eval_results = {} traj_results = {} eval_pattern = os.path.join(folder_path, 'eval_*.json') traj_pattern = os.path.join(folder_path, 'traj_*.json') for filepath in glob.glob(eval_pattern): filename = os.path.basename(filepath) total, result = analyze_eval_json_file(filepath) key = re.search(r'eval_(.+)\.json', filename).group(1) eval_results[key] = (total, result) for filepath in glob.glob(traj_pattern): filename = os.path.basename(filepath) steps, cost = analyze_traj_json_file(filepath) key = re.search(r'traj_(.+)\.json', filename).group(1) traj_results[key] = (steps, cost) return eval_results, traj_results def get_task_nature_category(task_name: str) -> str: """ Get the nature category of the task. """ task_nature = task_name.split('-')[0] if task_nature.lower() in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance']: return task_nature else: return 'other' def calculate_score(total: int, result: int) -> float: """ Calculate the score as a number between 0 and 1. Formula: score = (result / total) * 0.5 + (result // total) * 0.5 Explanation: - (result / total) * 0.5: This is the completion ratio, scaled down to a 0-0.5 range. - (result // total) * 0.5: This is a binary score indicating whether the task was completed or not. Args: total: Total possible points result: Actual points achieved Returns: Score as a number between 0 and 1 """ return (result / total * 0.5) + (result // total * 0.5) def is_perfect_completion(total: int, result: int) -> bool: """ Check if the task achieved perfect completion. Args: total: Total possible points result: Actual points achieved Returns: True if result equals total, False otherwise """ return total > 0 and total == result def main(): if len(sys.argv) != 2: print('Usage: poetry run python summarise_results.py ') sys.exit(1) folder_path = sys.argv[1] if not os.path.isdir(folder_path): print(f"Error: '{folder_path}' is not a valid directory") sys.exit(1) eval_results, traj_results = analyze_folder(folder_path) if not eval_results: print(f'No eval_*.json files found in {folder_path}') return # Create list of results with completion ratios for sorting detailed_results = [ ( task_name, total, result, calculate_score(total, result), is_perfect_completion(total, result), get_task_nature_category(task_name), ) for task_name, (total, result) in eval_results.items() ] # Sort by score in descending order detailed_results.sort(key=lambda x: (-x[3], x[0])) # Calculate perfect completion stats perfect_completions = sum( 1 for _, _, _, _, is_perfect, _ in detailed_results if is_perfect ) # Print header print('\n# Evaluation Results Report') print('\n## Results per File') print('\n*Sorted by score (⭐ indicates perfect completion)*\n') # Print table header print( '| Filename | Total | Result | Score | Steps | Cost (assuming no prompt caching)|' ) print('|----------|--------|---------|-------|-------|------|') # Print individual file results for task_name, total, result, score, is_perfect, task_nature in detailed_results: perfect_marker = ' ⭐' if is_perfect else '' print( f'| {task_name} | {total:,} | {result:,} | {score:.2f}{perfect_marker} | {traj_results[task_name][0]} | {traj_results[task_name][1]:.2f} |' ) # Print summary section print('\n## Summary\n') print(f'**Tasks Evaluated:** {len(eval_results)}\n') print( f'**Perfect Completions:** {perfect_completions}/{len(eval_results)} ({(perfect_completions/len(eval_results)*100):.2f}%)\n' ) overall_score = ( sum(score for _, _, _, score, _, _ in detailed_results) / len(detailed_results) * 100 ) avg_steps = sum(steps for steps, _ in traj_results.values()) / len(traj_results) avg_cost = sum(cost for _, cost in traj_results.values()) / len(traj_results) print(f'**Overall Score:** {overall_score:.2f}%\n') print(f'**Average Steps:** {avg_steps:.2f}\n') print(f'**Average Cost (USD):** {avg_cost:.2f}\n') # Additional statistics if detailed_results: highest_score = max(score for _, _, _, score, _, _ in detailed_results) lowest_score = min(score for _, _, _, score, _, _ in detailed_results) median_score = detailed_results[len(detailed_results) // 2][3] avg_score = sum(score for _, _, _, score, _, _ in detailed_results) / len( detailed_results ) print('\n## Statistics\n') print('| Metric | Value |') print('|---------|--------|') print(f'| Highest Task Score | {highest_score*100:.2f}% |') print(f'| Lowest Task Score | {lowest_score*100:.2f}% |') print(f'| Median Task Score | {median_score*100:.2f}% |') print(f'| Average Task Score | {avg_score*100:.2f}% |') # compute avg score per nature category print('\n## Statistics per Nature Category\n') print('| Metric | Value |') print('|---------|--------|') for task_nature in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance', 'other']: num_of_tasks = sum( 1 for _, _, _, _, _, nature_category in detailed_results if nature_category == task_nature ) task_nature_score = ( sum( score for _, _, _, score, _, nature_category in detailed_results if nature_category == task_nature ) / num_of_tasks ) perfect_completions = sum( 1 for _, _, _, _, is_perfect, nature_category in detailed_results if nature_category == task_nature and is_perfect ) print( f'| Perfect Completions for {task_nature} | {perfect_completions}/{num_of_tasks} ({perfect_completions/num_of_tasks*100:.2f}%) |' ) print(f'| Average Score for {task_nature} | {task_nature_score*100:.2f}% |') if __name__ == '__main__': main()