|
import asyncio
|
|
import json
|
|
import os
|
|
|
|
import git
|
|
import pandas as pd
|
|
|
|
from evaluation.benchmarks.discoverybench.eval_utils.eval_w_subhypo_gen import (
|
|
run_eval_gold_vs_gen_NL_hypo_workflow,
|
|
)
|
|
from evaluation.benchmarks.discoverybench.eval_utils.response_parser import (
|
|
extract_gen_hypo_from_logs,
|
|
)
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AgentConfig,
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
EVALUATION_LLM = 'gpt-4-1106-preview'
|
|
|
|
DATA_FILES = {}
|
|
|
|
LIBRARIES = [
|
|
'pandas',
|
|
'numpy',
|
|
'scipy',
|
|
'matplotlib',
|
|
'seaborn',
|
|
'scikit-learn',
|
|
'statsmodels',
|
|
]
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
agent_config = AgentConfig(
|
|
function_calling=False,
|
|
codeact_enable_jupyter=True,
|
|
codeact_enable_browsing_delegate=True,
|
|
)
|
|
config.set_agent_config(agent_config)
|
|
return config
|
|
|
|
|
|
def get_dv_query_for_real(
|
|
datasets, question, domain_knowledge=None, workflow_tags=None
|
|
):
|
|
"""
|
|
Prepare a structured query for the agent to execute on the specified datasets.
|
|
|
|
This function constructs a query by compiling metadata from the provided datasets, along with any relevant domain knowledge and workflow tags.
|
|
|
|
Args:
|
|
datasets: List of datasets
|
|
question: Query to be answered
|
|
domain_knowledge: Domain knowledge if any
|
|
workflow_tags: Workflow tags if any
|
|
|
|
Returns:
|
|
query_to_dv: Query to be run on the dataset
|
|
dataset_meta: Metadata of the dataset
|
|
"""
|
|
|
|
dataset_meta = ''
|
|
for dataset_metadata in datasets:
|
|
dataset_meta += 'Dataset name: ' + dataset_metadata['name']
|
|
dataset_meta += 'Dataset description: ' + dataset_metadata['description']
|
|
dataset_meta += '\nBrief description of columns: '
|
|
for col in dataset_metadata['columns']['raw']:
|
|
dataset_meta += col['name'] + ': ' + col['description'] + ', '
|
|
|
|
query_to_dv = dataset_meta
|
|
|
|
query_to_dv += f'\nQuery: {question}'
|
|
|
|
if domain_knowledge:
|
|
query_to_dv += (
|
|
'\nAdditionally, we provide some hints that might be useful to solve the task. Domain Knowledge: \n'
|
|
+ domain_knowledge
|
|
+ '.\n'
|
|
)
|
|
|
|
if workflow_tags:
|
|
query_to_dv += 'The meta tags are: ' + workflow_tags + '.\n'
|
|
|
|
query_to_dv += (
|
|
'In the final answer, please write down a scientific hypothesis in '
|
|
'natural language, derived from the provided dataset, clearly stating the '
|
|
'context of hypothesis (if any), variables chosen (if any) and '
|
|
'relationship between those variables (if any) including any statistical significance.'
|
|
'Also generate a summary of the full workflow starting from data loading that led to the final answer as WORKFLOW SUMMARY:'
|
|
)
|
|
|
|
|
|
return query_to_dv, dataset_meta
|
|
|
|
|
|
def initialize_runtime(runtime: Runtime, data_files: list[str]):
|
|
"""
|
|
Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
for file in data_files:
|
|
runtime.copy_to(
|
|
file,
|
|
'/workspace',
|
|
)
|
|
|
|
for lib in LIBRARIES:
|
|
action = CmdRunAction(command=f'pip install {lib}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def get_last_agent_finish_action(state: State) -> AgentFinishAction:
|
|
for event in reversed(state.history):
|
|
if isinstance(event, AgentFinishAction):
|
|
return event
|
|
return None
|
|
|
|
|
|
def get_last_message_action(state: State) -> MessageAction:
|
|
for event in reversed(state.history):
|
|
if isinstance(event, MessageAction):
|
|
return event
|
|
return None
|
|
|
|
|
|
def complete_runtime(state: State):
|
|
last_agent_finish_action = get_last_agent_finish_action(state)
|
|
last_agent_message_action = get_last_message_action(state)
|
|
|
|
if last_agent_finish_action is not None:
|
|
final_message_1 = last_agent_finish_action.thought
|
|
gen_hypo_1, gen_workflow_1, error_1 = extract_gen_hypo_from_logs(
|
|
final_message_1
|
|
)
|
|
else:
|
|
gen_hypo_1, gen_workflow_1, error_1 = '', '', ''
|
|
|
|
if last_agent_message_action is not None:
|
|
final_message_2 = last_agent_message_action.content
|
|
gen_hypo_2, gen_workflow_2, error_2 = extract_gen_hypo_from_logs(
|
|
final_message_2
|
|
)
|
|
else:
|
|
gen_hypo_2, gen_workflow_2, error_2 = '', '', ''
|
|
|
|
if gen_hypo_1 and gen_hypo_2:
|
|
test_result = {
|
|
'gen_hypo': last_agent_finish_action.thought
|
|
if last_agent_finish_action
|
|
else last_agent_message_action.content,
|
|
'gen_workflow': '',
|
|
'error': '',
|
|
}
|
|
return test_result
|
|
|
|
test_result = {
|
|
'gen_hypo': gen_hypo_1 if gen_hypo_1 else gen_hypo_2,
|
|
'gen_workflow': gen_workflow_1 if gen_workflow_1 else gen_workflow_2,
|
|
'error': error_1 if error_1 else error_2,
|
|
}
|
|
|
|
return test_result
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
"""
|
|
Process and evaluate a single instance of the dataset.
|
|
|
|
This function executes the OpenHands agent
|
|
for a specific instance of the dataset. It retrieves
|
|
the agent's results and evaluates them against the gold
|
|
hypothesis.
|
|
|
|
Args:
|
|
instance: A single row of the dataset
|
|
metadata: Metadata for the evaluation
|
|
reset_logger: Whether to reset the logger
|
|
|
|
Returns:
|
|
output: EvalOutput object
|
|
"""
|
|
|
|
config = get_config(metadata)
|
|
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
problem_statement, dataset_metadata = get_dv_query_for_real(
|
|
datasets=instance.datasets,
|
|
question=instance.query,
|
|
domain_knowledge=instance.domain_knowledge,
|
|
workflow_tags=instance.workflow_tags,
|
|
)
|
|
|
|
|
|
instruction = (
|
|
f'You are a discovery agent who can execute a python code only once to answer a query based on one or more datasets. The datasets will be present in the current directory.\n\n'
|
|
'Environment has been set up for you to start working. You may assume all necessary tools and datasets are installed.\n\n'
|
|
'# Problem Statement\n'
|
|
f'{problem_statement}\n\n'
|
|
)
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
|
|
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
|
|
)
|
|
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance.data_files)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
test_result = complete_runtime(state)
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
eval_rec = run_eval_gold_vs_gen_NL_hypo_workflow(
|
|
query=instance.query,
|
|
gold_hypo=instance.gold_hypo,
|
|
gold_workflow='',
|
|
gen_hypo=test_result['gen_hypo'],
|
|
gen_workflow='',
|
|
dataset_meta=instance.dataset_metadata,
|
|
llm_used=EVALUATION_LLM,
|
|
dataset_type='real',
|
|
)
|
|
|
|
test_result['eval_rec'] = eval_rec
|
|
|
|
output = EvalOutput(
|
|
instance_id=str(instance.instance_id),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
def update_csv_name(name):
|
|
name = name.replace('-', '_')
|
|
|
|
if 'meta_regression' in name:
|
|
name = name.replace('meta_regression', 'meta-regression')
|
|
if 'ML_enabled' in name:
|
|
name = name.replace('ML_enabled', 'ML-enabled')
|
|
|
|
return name
|
|
|
|
|
|
def list_csv_files(list_of_datasets):
|
|
res = []
|
|
for ele in list_of_datasets:
|
|
for key, value in ele.items():
|
|
if key == 'name':
|
|
csv_file_name = update_csv_name(value)
|
|
res.append(DATA_FILES[csv_file_name])
|
|
return res
|
|
|
|
|
|
def create_dataset(repo_location: str, split: str = 'test'):
|
|
"""
|
|
Create a dataset from the discoverybench repository
|
|
by walking through the repository and extracting metadata
|
|
from the metadata_{}.json files
|
|
|
|
Args:
|
|
repo_location: Location of the repository
|
|
split: Split of the dataset to use
|
|
|
|
Returns:
|
|
df: DataFrame containing the dataset instances
|
|
"""
|
|
|
|
data_dict = {}
|
|
|
|
data_location = os.path.join(repo_location, 'discoverybench', 'real', split)
|
|
answer_key_location = os.path.join(repo_location, 'eval', 'answer_key_real.csv')
|
|
|
|
idx = 0
|
|
|
|
for root, dirs, files in os.walk(data_location):
|
|
for file in files:
|
|
if file.endswith('.json'):
|
|
if 'metadata' in file:
|
|
metadata = json.load(open(os.path.join(root, file)))
|
|
|
|
dataset = root.split('/')[-1]
|
|
metadata_id = file.split('_')[-1].split('.')[0]
|
|
domain = metadata.get('domain', '')
|
|
domain_knowledge = metadata.get('domain_knowledge', '')
|
|
workflow_tags = metadata.get('workflow_tags', '')
|
|
datasets = metadata.get('datasets', [])
|
|
queries = metadata.get('queries', [])
|
|
gold_workflow = metadata.get('workflow')
|
|
|
|
|
|
|
|
for query in queries[0]:
|
|
qid = query.get('qid', '')
|
|
|
|
data = {
|
|
'dataset': dataset,
|
|
'metadata_id': metadata_id,
|
|
'qid': qid,
|
|
'domain': domain,
|
|
'domain_knowledge': domain_knowledge,
|
|
'workflow_tags': workflow_tags,
|
|
'datasets': datasets,
|
|
'question_type': query['question_type'],
|
|
'query': query['question'],
|
|
'gold_workflow': gold_workflow,
|
|
'dataset_metadata': metadata,
|
|
}
|
|
|
|
data_dict[idx] = data
|
|
idx += 1
|
|
|
|
if file.endswith('.csv'):
|
|
DATA_FILES[file] = os.path.join(root, file)
|
|
if file.endswith('.txt'):
|
|
DATA_FILES[file] = os.path.join(root, file)
|
|
|
|
df = pd.DataFrame.from_dict(data_dict, orient='index')
|
|
|
|
df['instance_id'] = df.index
|
|
|
|
df['data_files'] = df['datasets'].apply(lambda x: list_csv_files(x))
|
|
|
|
answer_key = pd.read_csv(answer_key_location)
|
|
|
|
answer_key = answer_key.rename(
|
|
columns={
|
|
'metadataid': 'metadata_id',
|
|
'query_id': 'qid',
|
|
'gold_hypothesis': 'gold_hypothesis',
|
|
}
|
|
)
|
|
|
|
df['qid'] = df['qid'].astype(int)
|
|
df['metadata_id'] = df['metadata_id'].astype(int)
|
|
|
|
answer_key['qid'] = answer_key['qid'].astype(int)
|
|
answer_key['metadata_id'] = answer_key['metadata_id'].astype(int)
|
|
|
|
df = pd.merge(df, answer_key, on=['dataset', 'metadata_id', 'qid'], how='left')
|
|
|
|
return df
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
|
|
repo_url = 'https://github.com/allenai/discoverybench.git'
|
|
repo_location = 'git-discoverybench-allenai'
|
|
|
|
try:
|
|
git.Repo.clone_from(repo_url, repo_location)
|
|
except git.exc.GitCommandError:
|
|
print('Repository already exists')
|
|
|
|
dataset = create_dataset(repo_location)
|
|
|
|
|
|
if dataset['data_files'].isnull().any():
|
|
raise ValueError('Some csv files are missing.')
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'discoverybench-python',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|