|
import asyncio
|
|
import os
|
|
import re
|
|
|
|
import nltk
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
|
|
|
|
SUPPORTED_AGENT_CLS = {'CodeActAgent'}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
assert (
|
|
metadata.max_iterations == 1
|
|
), 'max_iterations must be 1 for browsing delegation evaluation.'
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=False,
|
|
use_host_network=False,
|
|
),
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
instruction = (
|
|
f'You can delegate browsing tasks to a browser agent. '
|
|
f"For example, for query 'Who is the president of the United States?', you can delegate the task to a browser agent via <execute_browse> Who is the president of the United States? </execute_browse>.\n"
|
|
f'Now, solve the following query: "{instance.instruction}"\n'
|
|
f'NOTE: You should copy the "query" as is into the <execute_browse> tag. DO NOT change ANYTHING in the query.'
|
|
)
|
|
|
|
runtime = create_runtime(config)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
last_delegate_action = None
|
|
result = {}
|
|
for action, _ in histories:
|
|
if action['action'] == 'delegate':
|
|
last_delegate_action = action
|
|
instruction_for_delegate = action['args']['inputs']['task']
|
|
|
|
|
|
instruction_for_delegate = re.search(
|
|
r'I should start with: (.*)', instruction_for_delegate
|
|
).group(1)
|
|
|
|
|
|
edit_distance = nltk.edit_distance(
|
|
instance.instruction, instruction_for_delegate
|
|
)
|
|
is_exact_match = (
|
|
instance.instruction.strip() == instruction_for_delegate.strip()
|
|
)
|
|
result['edit_distance'] = edit_distance
|
|
result['is_exact_match'] = is_exact_match
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'query': instance.instruction,
|
|
'action': last_delegate_action,
|
|
'result': result,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
dataset = load_dataset('OpenHands/eval-browsing-instructions')
|
|
dataset = dataset['train'].to_pandas()
|
|
assert dataset.columns.tolist() == ['instance_id', 'instruction']
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'browsing_delegation',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
|
|
if metadata.agent_class not in SUPPORTED_AGENT_CLS:
|
|
raise ValueError(
|
|
f'Agent class {metadata.agent_class} not supported with AgentDelegation.'
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|