|
import asyncio
|
|
import copy
|
|
import os
|
|
import tempfile
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.benchmarks.aider_bench.helper import (
|
|
FAKE_RESPONSES,
|
|
INST_SUFFIXES,
|
|
INSTRUCTIONS_ADDENDUM,
|
|
)
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
load_from_toml,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
|
|
USE_UNIT_TESTS = os.environ.get('USE_UNIT_TESTS', 'false').lower() == 'true'
|
|
SKIP_NUM = os.environ.get('SKIP_NUM')
|
|
SKIP_NUM = (
|
|
int(SKIP_NUM) if SKIP_NUM and SKIP_NUM.isdigit() and int(SKIP_NUM) >= 0 else None
|
|
)
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime=os.environ.get('RUNTIME', 'docker'),
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.11-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
timeout=100,
|
|
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
keep_runtime_alive=False,
|
|
remote_runtime_init_timeout=1800,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
|
|
|
|
config_copy = copy.deepcopy(config)
|
|
load_from_toml(config_copy)
|
|
if 'draft_editor' in config_copy.llms:
|
|
config.set_llm_config(config_copy.llms['draft_editor'], 'draft_editor')
|
|
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"\n{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}\n")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
file_path = os.path.join(tmpdir, f'{instance.instance_name}.py')
|
|
with open(file_path, 'w') as f:
|
|
f.write(instance.signature)
|
|
runtime.copy_to(
|
|
file_path,
|
|
'/workspace',
|
|
)
|
|
if USE_UNIT_TESTS:
|
|
file_path = os.path.join(tmpdir, f'{instance.instance_name}_test.py')
|
|
with open(file_path, 'w') as f:
|
|
f.write(instance.test)
|
|
runtime.copy_to(
|
|
file_path,
|
|
'/workspace',
|
|
)
|
|
logger.info(f"\n{'-' * 50} END Runtime Initialization Fn {'-' * 50}\n")
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"\n{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}\n")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
script_name = f'{instance.instance_name}_test.py'
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
file_path = os.path.join(tmpdir, script_name)
|
|
with open(file_path, 'w') as f:
|
|
f.write(instance.test)
|
|
runtime.copy_to(
|
|
file_path,
|
|
'/workspace',
|
|
)
|
|
logger.info(f'Running test file: {script_name}')
|
|
|
|
action = CmdRunAction(command=f'python3 -m unittest {script_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
exit_code = 1
|
|
if isinstance(obs, CmdOutputObservation):
|
|
exit_code = obs.exit_code
|
|
|
|
logger.info(f"\n{'-' * 50} END Runtime Completion Fn {'-' * 50}\n")
|
|
|
|
runtime.close()
|
|
|
|
return {
|
|
'test_output': obs.content,
|
|
'exit_code': exit_code,
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
|
|
else:
|
|
logger.info(
|
|
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(instance)
|
|
instruction = instance.instruction
|
|
instruction += INSTRUCTIONS_ADDENDUM.format(
|
|
signature_file=f'{instance.instance_name}.py',
|
|
)
|
|
if USE_UNIT_TESTS:
|
|
logger.info(
|
|
f'\nInstruction to run test_file: {instance.instance_name}_test.py\n'
|
|
)
|
|
instruction += (
|
|
f'Use `python -m unittest {instance.instance_name}_test.py` to run the test_file '
|
|
'and verify the correctness of your solution. DO NOT EDIT the test file.\n\n'
|
|
)
|
|
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided '
|
|
'to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
)
|
|
|
|
instruction += INST_SUFFIXES[metadata.agent_class]
|
|
|
|
|
|
|
|
|
|
|
|
runtime: Runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
initialize_runtime(runtime, instance=instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
|
|
)
|
|
)
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
|
|
|
|
|
|
|
|
return_val = complete_runtime(runtime, instance)
|
|
exit_code = return_val['exit_code']
|
|
test_output = return_val['test_output']
|
|
|
|
errors = []
|
|
test_cases = None
|
|
if test_output.find('SyntaxError') != -1:
|
|
errors += 'SyntaxError'
|
|
elif test_output.find('IndentationError') != -1:
|
|
errors += 'IndentationError'
|
|
else:
|
|
test_cases = test_output[: test_output.find('\r')]
|
|
|
|
test_result = {
|
|
'exit_code': exit_code,
|
|
'test_cases': test_cases,
|
|
'errors': errors,
|
|
}
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=str(instance.instance_id),
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
dataset = load_dataset('RajMaheshwari/Exercism-Python')
|
|
aider_bench_tests = dataset['train'].to_pandas()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'AiderBench',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
|
|
eval_ids = None
|
|
if args.eval_ids:
|
|
eval_ids = str(args.eval_ids).split(',')
|
|
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
|
|
|
|
instances = prepare_dataset(
|
|
aider_bench_tests,
|
|
output_file,
|
|
args.eval_n_limit,
|
|
eval_ids=eval_ids,
|
|
skip_num=SKIP_NUM,
|
|
)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|