|
import asyncio
|
|
import os
|
|
import re
|
|
import tempfile
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.benchmarks.agent_bench.helper import (
|
|
FAKE_RESPONSES,
|
|
INST_SUFFIXES,
|
|
compare_results,
|
|
create_sh_file,
|
|
)
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime=os.environ.get('RUNTIME', 'docker'),
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-slim',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
keep_runtime_alive=False,
|
|
remote_runtime_init_timeout=3600,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
init_cmd = instance.init
|
|
if init_cmd is not None:
|
|
script_name = f'{instance.instance_id}_init.sh'
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
host_script_path = os.path.join(tmpdir, script_name)
|
|
create_sh_file(host_script_path, init_cmd)
|
|
runtime.copy_to(
|
|
host_script_path,
|
|
'/workspace',
|
|
)
|
|
|
|
logger.info(f'Running init script: {script_name}')
|
|
action = CmdRunAction(command=f'chmod +x ./{script_name} && ./{script_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
agent_answer = None
|
|
get_agent_result_cmd = instance.get_agent_result
|
|
if get_agent_result_cmd is not None:
|
|
script_name = 'get_agent_result.sh'
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
host_script_path = os.path.join(tmpdir, script_name)
|
|
create_sh_file(host_script_path, get_agent_result_cmd)
|
|
runtime.copy_to(
|
|
host_script_path,
|
|
'/workspace',
|
|
)
|
|
logger.info(f'Running get agent result cmd: {script_name}')
|
|
|
|
action = CmdRunAction(
|
|
command=f'chmod +x ./{script_name} && ./{script_name}',
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
agent_answer = obs.content
|
|
|
|
|
|
|
|
final_ans = None
|
|
if instance.ground_truth is not None:
|
|
final_ans = instance.ground_truth
|
|
else:
|
|
get_ground_truth_cmd = instance.get_ground_truth
|
|
if get_ground_truth_cmd is not None:
|
|
script_name = 'get_ground_truth.sh'
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
host_script_path = os.path.join(tmpdir, script_name)
|
|
create_sh_file(host_script_path, get_ground_truth_cmd)
|
|
runtime.copy_to(
|
|
host_script_path,
|
|
'/workspace',
|
|
)
|
|
logger.info(f'Running get ground truth cmd: {script_name}')
|
|
|
|
action = CmdRunAction(
|
|
command=f'chmod +x ./{script_name} && ./{script_name}'
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
final_ans = obs.content
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return {
|
|
'final_ans': final_ans,
|
|
'agent_answer': agent_answer,
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
instruction = (
|
|
f'Please fix the following issue.\n'
|
|
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
|
|
'For example: The answer to the question is <solution> 42 </solution>.\n'
|
|
'# Problem \n'
|
|
f'{instance.description}\n\n'
|
|
)
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided '
|
|
'to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
)
|
|
|
|
instruction += INST_SUFFIXES[metadata.agent_class]
|
|
|
|
|
|
|
|
|
|
|
|
runtime: Runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
initialize_runtime(runtime, instance=instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
|
|
)
|
|
)
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
|
|
|
|
|
|
|
|
return_val = complete_runtime(runtime, instance)
|
|
agent_answer = return_val['agent_answer']
|
|
final_ans = return_val['final_ans']
|
|
|
|
|
|
if agent_answer is None:
|
|
agent_answer = ''
|
|
logger.info('Retrieving agent answer from history.')
|
|
raw_ans = ''
|
|
|
|
|
|
for event in reversed(state.history):
|
|
if event.source == 'agent':
|
|
if isinstance(event, AgentFinishAction):
|
|
raw_ans = event.thought
|
|
break
|
|
elif isinstance(event, MessageAction):
|
|
raw_ans = event.content
|
|
break
|
|
elif isinstance(event, CmdRunAction):
|
|
raw_ans = event.thought
|
|
break
|
|
|
|
|
|
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL)
|
|
if len(agent_answer) == 0:
|
|
logger.warning(f'Failed to parse model answer: {raw_ans}')
|
|
agent_answer = raw_ans
|
|
else:
|
|
agent_answer = agent_answer[0]
|
|
|
|
comparison_method = instance.comparison_method
|
|
logger.info(
|
|
f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
|
|
)
|
|
test_result = compare_results(comparison_method, agent_answer, final_ans)
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'agent_answer': agent_answer,
|
|
'final_answer': final_ans,
|
|
'check_method': comparison_method,
|
|
'result': test_result,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
dataset = load_dataset('iFurySt/AgentBench')
|
|
agent_bench_tests = dataset['osbench'].to_pandas()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'AgentBench-OS',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(agent_bench_tests, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
|