File size: 8,150 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import asyncio
import os
from typing import Any

import pandas as pd

from evaluation.benchmarks.toolqa.utils import encode_question, eval_answer, get_data
from evaluation.utils.shared import (
    EvalMetadata,
    EvalOutput,
    codeact_user_response,
    compatibility_for_eval_history_pairs,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}

AGENT_CLS_TO_INST_SUFFIX = {
    'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}


def get_config(

    metadata: EvalMetadata,

) -> AppConfig:
    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        runtime='docker',
        max_iterations=metadata.max_iterations,
        sandbox=SandboxConfig(
            base_container_image='python:3.12-bookworm',
            enable_auto_lint=True,
            use_host_network=False,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(metadata.llm_config)
    agent_config = config.get_agent_config(metadata.agent_class)
    agent_config.enable_prompt_extensions = False
    return config


def initialize_runtime(runtime: Runtime):
    """Initialize the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
    obs: CmdOutputObservation

    # Set instance id
    action = CmdRunAction(command='mkdir -p /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    action = CmdRunAction(command='cd /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid})

    logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")


def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
    config = get_config(metadata)

    qid = instance.qid
    question = instance.question
    answer = instance.answer

    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, qid, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {qid}.')

    # Prepare instruction
    instruction = encode_question(question)
    instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
    # NOTE: You can actually set slightly different instruction for different agents
    instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
    logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})

    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)
    initialize_runtime(runtime)

    # Here's how you can run the agent (similar to the `main` function) and get the final task state
    state: State | None = asyncio.run(
        run_controller(
            config=config,
            initial_user_action=MessageAction(content=instruction),
            runtime=runtime,
            fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
                metadata.agent_class
            ],
        )
    )
    # ======= Attempt to evaluate the agent's edits =======
    # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
    # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.

    if state is None:
        raise ValueError('State should not be None.')

    # retrieve the last message from the agent
    last_agent_message = state.get_last_agent_message()
    model_answer_raw = last_agent_message.content if last_agent_message else ''

    # attempt to parse model_answer
    correct = eval_answer(str(model_answer_raw), str(answer))
    logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')

    metrics = state.metrics.get() if state.metrics else None

    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
    # for compatibility with the existing output format, we can remake the pairs here
    # remove when it becomes unnecessary
    histories = compatibility_for_eval_history_pairs(state.history)

    # Save the output
    output = EvalOutput(
        instance_id=qid,
        test_result={
            'model_answer_raw': model_answer_raw,
            'correct': correct,
        },
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
    )
    return output


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--dataset',
        type=str,
        help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
        default='flight',
    )
    parser.add_argument(
        '--hardness',
        type=str,
        help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
        default='easy',
    )
    parser.add_argument(
        '--wolfram-alpha-appid',
        type=str,
        help='wolfram alpha appid to use for wolfram alpha related tests',
        default='YOUR_WOLFRAMALPHA_APPID',
    )
    args, _ = parser.parse_known_args()

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False

    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    dataset = ''
    hardness = ''
    dataset_choices = [
        'agenda',
        'airbnb',
        'coffee',
        'dblp',
        'flight',
        'gsm8k',
        'scirex',
        'yelp',
        'genda',
    ]
    if args.dataset not in dataset_choices:
        raise ValueError(
            'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
        )
    if args.hardness not in ['easy', 'hard']:
        raise ValueError('Please choose from easy and hard for hardness.')

    toolqa_test = pd.DataFrame(get_data(dataset, hardness))
    toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True)

    metadata = make_metadata(
        llm_config,
        f'toolqa-{args.dataset}-{args.hardness}',
        args.agent_cls,
        args.eval_note,
        args.eval_output_dir,
    )
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit)
    run_evaluation(
        instances, metadata, output_file, args.eval_num_workers, process_instance
    )