File size: 10,198 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import asyncio
import functools
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.mint.datatypes import TaskState
from evaluation.benchmarks.mint.env import SimplifiedEnv
from evaluation.benchmarks.mint.prompts import ToolPromptTemplate
from evaluation.benchmarks.mint.tasks import Task
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
Action,
CmdRunAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]):
logger.info(f'Gold reference: {task.reference}')
logger.info(f'Task config: {task_config}')
env = SimplifiedEnv(
agent_state=state,
task=task,
task_config=task_config,
)
last_action = next(
(event for event in reversed(state.history) if isinstance(event, Action)),
None,
)
result_state: TaskState = env.step(last_action.message or '')
state.extra_data['task_state'] = result_state
if not result_state.latest_output:
# Task is finished
msg = '/exit'
else:
msg = result_state.latest_output['content']
logger.info('User response:' + msg)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_mint,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n'
}
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f:
MINT_DEPENDENCIES = f.read().splitlines()
def load_incontext_example(task_name: str, with_tool: bool = True):
assert with_tool, 'NOT with_tool is not supported yet'
subset = {
'gsm8k': 'reasoning',
'math': 'reasoning',
'mmlu': 'reasoning',
'theoremqa': 'reasoning',
'mbpp': 'mbpp',
'humaneval': 'humaneval',
}[task_name]
with open(
os.path.join(
os.path.dirname(__file__),
'tasks',
'in_context_examples',
subset,
'with_tool.txt',
),
'r',
) as f:
return f.read()
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='xingyaoww/od-eval-mint:v1.0',
enable_auto_lint=True,
use_host_network=False,
runtime_extra_deps=f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}',
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def initialize_runtime(runtime: Runtime):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def process_instance(
instance: Any,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Prepare instruction
assert metadata.details is not None
instruction = ToolPromptTemplate(use_tool=True)(
max_total_steps=metadata.max_iterations,
max_propose_solution=metadata.details['max_propose_solution'],
in_context_example=instance.in_context_example,
task_prompt='Task:\n' + instance.prompt,
)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
fake_user_response_fn = functools.partial(
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
task=instance,
task_config={
'max_iterations': metadata.max_iterations,
'max_propose_solution': metadata.details['max_propose_solution'],
},
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=fake_user_response_fn,
)
)
if state is None:
raise ValueError('State should not be None.')
task_state = None
if 'task_state' in state.extra_data:
task_state = state.extra_data['task_state']
logger.info('Task state: ' + str(task_state.to_dict()))
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'success': task_state.success if task_state else False,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
SUBSETS = [
# Eurus subset: https://arxiv.org/abs/2404.02078
'math',
# 'gsm8k',
'mmlu',
'theoremqa',
'mbpp',
'humaneval',
]
parser.add_argument(
'--subset',
default='all',
choices=SUBSETS + ['all'],
type=str,
help='subset of the dataset to be used',
)
parser.add_argument(
'--max-propose-solution',
default=2,
type=int,
help='maximum number of times the agent can propose a solution',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
if args.subset == 'all':
subsets = SUBSETS
else:
subsets = [args.subset]
dataset_dfs = []
for subset in subsets:
in_context_example = load_incontext_example(subset)
_cur_dataset = load_dataset(
'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test'
)
logger.info(f'Loaded MINT - {subset} subset')
_df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'})
_df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}') # noqa
_df['in_context_example'] = in_context_example
dataset_dfs.append(_df)
logger.info(f'Loaded {len(_df)} instances for subset: {subset}')
dataset_df = pd.concat(dataset_dfs)
logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
f'MINT-{args.subset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details={'max_propose_solution': args.max_propose_solution},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
|