File size: 6,538 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import json
import os
import pprint

import tqdm

from openhands.core.config import get_llm_config_arg, get_parser, load_app_config
from openhands.core.logger import openhands_logger as logger
from openhands.llm.llm import LLM

config = load_app_config()


def extract_test_results(res_file_path: str) -> tuple[list[str], list[str]]:
    passed = []
    failed = []
    costs = []
    instance_ids = set()
    instances = []
    with open(res_file_path, 'r') as file:
        for line in file:
            data = json.loads(line.strip())
            success = data['metrics']['success']
            if data['instance_id'] in instance_ids:
                print(f'WARNING: Duplicate instance_id found: {data["instance_id"]}')
                continue
            instance_ids.add(data['instance_id'])
            instances.append(data)
            if success:
                passed.append(
                    {
                        'instance_id': data['instance_id'],
                        'repo': data['repo'],
                        'instruction': data['instruction'],
                        'eval_script': data['eval_script'],
                        'eval_exit_code': data['eval_exit_code'],
                        'eval_output': data['eval_output'],
                        'accumulated_cost': data['metrics']['accumulated_cost'],
                    }
                )
            else:
                failed.append(
                    {
                        'instance_id': data['instance_id'],
                        'repo': data['repo'],
                        'instruction': data['instruction'],
                        'metadata': data['metadata'],
                        'history': data['history'],
                        'eval_script': data['eval_script'],
                        'eval_exit_code': data['eval_exit_code'],
                        'eval_output': data['eval_output'],
                        'accumulated_cost': data['metrics']['accumulated_cost'],
                    }
                )
            costs.append(data['metrics']['accumulated_cost'])

        # sort by instance_id
        instances.sort(key=lambda x: x['instance_id'])
        with open(res_file_path, 'w') as file:
            for instance in instances:
                file.write(json.dumps(instance) + '\n')
        return passed, failed, costs


def classify_error(llm: LLM, failed_case: dict) -> str:
    prompt = f"""

    Please classify the error for the following failed case based on the history and eval_output:



    Instruction:

    {failed_case['instruction']}



    Eval Script:

    {failed_case['eval_script']}s



    History:

    {failed_case['history']}



    Eval Output:

    {failed_case['eval_output']}



    The error categories are:

    E1: Hallucination Errors - The model misinterpreted the user's intention, misplaced Python code and bash script, or generated random or irrelevant code.

    E2: Lack of Knowledge or Information - The model lacks sufficient information or domain-specific knowledge to satisfy the user's requirements.

    E3: Knowledge Manipulation - The model failed to integrate or manipulate information properly.

    E4: Syntax Errors - The model generated code with syntax errors.

    E5: Operational Error - The model gave up easily or exited without finishing the tasks.



    Please provide only the error category (E1, E2, E3, E4, or E5) without any explanation.

    """

    try:
        response = llm.completion(messages=[{'content': prompt, 'role': 'user'}])
        error_category = response.choices[0].message['content']
    except Exception as e:
        logger.error(
            f"Failed to classify the error for the failed case: {failed_case['instance_id']}"
        )
        logger.error(e)
        error_category = input(
            failed_case['instruction']
            + ': '
            + failed_case['eval_script']
            + ' - '
            + failed_case['eval_output']
        )

    if error_category not in ['E1', 'E2', 'E3', 'E4', 'E5']:
        raise ValueError(f'Invalid error category: {error_category}')

    return error_category


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--json_file_path',
        type=str,
        required=True,
        help='Path to the jsonl file containing the evaluation results',
    )
    args, _ = parser.parse_known_args()

    # Check https://github.com/All-Hands-AI/OpenHands/blob/main/evaluation/swe_bench/README.md#configure-openhands-and-your-llm
    # for details of how to set `llm_config`
    if args.llm_config:
        specified_llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        specified_llm_config.modify_params = False

        if specified_llm_config:
            config.llm = specified_llm_config
    logger.info(f'Config for evaluation: {config}')
    llm = LLM(llm_config=specified_llm_config)

    passed, new_failed, costs = extract_test_results(args.json_file_path)

    failed = []
    if os.path.exists(args.json_file_path.replace('.jsonl', '_failed.jsonl')):
        with open(args.json_file_path.replace('.jsonl', '_failed.jsonl'), 'r') as file:
            for line in file:
                failed.append(json.loads(line.strip()))
        print(
            f'Loaded {len(failed)} failed cases from {args.json_file_path.replace(".jsonl", "_failed.jsonl")}'
        )

    for failed_case in tqdm.tqdm(new_failed):
        if failed_case['instance_id'] in [case['instance_id'] for case in failed]:
            continue
        error_category = classify_error(llm, failed_case)
        failed_case['error_category'] = error_category
        failed.append(failed_case)
        with open(args.json_file_path.replace('.jsonl', '_failed.jsonl'), 'a') as file:
            file.write(json.dumps(failed_case) + '\n')

    # Print the summary
    print('Summary:')
    print(f'Passed: {len(passed)}')
    print(f'Failed: {len(failed)}')
    print(f'Costs: {costs}')
    print('Failed cases:')
    error_categories = {}
    for case in failed:
        error_category = case['error_category']
        if error_category not in error_categories:
            error_categories[error_category] = 0
        error_categories[error_category] += 1
    pprint.pprint(error_categories)