Update index.html
Browse files- index.html +144 -477
index.html
CHANGED
@@ -318,486 +318,170 @@
|
|
318 |
</div>
|
319 |
|
320 |
<script>
|
321 |
-
class
|
322 |
-
constructor(network, options = {}) {
|
323 |
-
this.network = network;
|
324 |
-
this.options = {
|
325 |
-
memorySize: options.memorySize || 128,
|
326 |
-
batchSize: options.batchSize || 16,
|
327 |
-
learningRate: options.learningRate || 0.01,
|
328 |
-
gamma: options.gamma || 0.9,
|
329 |
-
epsilon: options.epsilon || 1,
|
330 |
-
epsilonMin: options.epsilonMin || 0.01,
|
331 |
-
epsilonDecay: options.epsilonDecay || 0.95,
|
332 |
-
weightUpdateRange: options.weightUpdateRange || 0.02,
|
333 |
-
actionSpace: options.actionSpace || 2048,
|
334 |
-
memoryLayerSize: options.memoryLayerSize || 32,
|
335 |
-
predictionHorizon: options.predictionHorizon || 16,
|
336 |
-
memoryCellDecay: options.memoryCellDecay || 0.9
|
337 |
-
};
|
338 |
-
|
339 |
-
// Initialize memory cells
|
340 |
-
this.memoryCells = {
|
341 |
-
shortTerm: new Array(this.options.memoryLayerSize).fill(0),
|
342 |
-
longTerm: new Array(this.options.memoryLayerSize).fill(0),
|
343 |
-
cellState: new Array(this.options.memoryLayerSize).fill(0)
|
344 |
-
};
|
345 |
-
|
346 |
-
// Initialize gates and networks
|
347 |
-
this.gates = {
|
348 |
-
forget: this.createGateNetwork(this.options.memoryLayerSize),
|
349 |
-
input: this.createGateNetwork(this.options.memoryLayerSize),
|
350 |
-
output: this.createGateNetwork(this.options.memoryLayerSize),
|
351 |
-
candidates: this.createGateNetwork(this.options.memoryLayerSize)
|
352 |
-
};
|
353 |
-
|
354 |
-
this.memory = [];
|
355 |
-
this.currentState = this.getNetworkState();
|
356 |
-
this.bestWeights = this.cloneWeights(network.weights);
|
357 |
-
this.bestLoss = Infinity;
|
358 |
-
this.epsilon = this.options.epsilon;
|
359 |
-
|
360 |
-
this.qNetwork = this.createQNetwork();
|
361 |
-
this.outcomePredictor = this.createOutcomePredictor();
|
362 |
-
}
|
363 |
-
|
364 |
-
createGateNetwork(size) {
|
365 |
-
const gate = new carbono(false);
|
366 |
-
gate.layer(this.getFlattenedStateSize(), size, "sigmoid");
|
367 |
-
return gate;
|
368 |
-
}
|
369 |
-
|
370 |
-
createQNetwork() {
|
371 |
-
const qNet = new carbono(false);
|
372 |
-
const stateSize = this.getFlattenedStateSize();
|
373 |
-
const actionSize = this.getActionSpaceSize();
|
374 |
-
|
375 |
-
qNet.layer(stateSize + actionSize, 16, "selu");
|
376 |
-
qNet.layer(16, 16, "selu");
|
377 |
-
qNet.layer(16, 1, "selu");
|
378 |
-
|
379 |
-
return qNet;
|
380 |
-
}
|
381 |
-
|
382 |
-
createOutcomePredictor() {
|
383 |
-
const predictor = new carbono(false);
|
384 |
-
const inputSize =
|
385 |
-
this.getFlattenedStateSize() + this.options.memoryLayerSize * 3;
|
386 |
-
|
387 |
-
predictor.layer(inputSize, 8, "tanh");
|
388 |
-
predictor.layer(8, 8, "tanh");
|
389 |
-
predictor.layer(8, this.options.predictionHorizon, "tanh");
|
390 |
-
|
391 |
-
return predictor;
|
392 |
-
}
|
393 |
-
|
394 |
-
getFlattenedStateSize() {
|
395 |
-
let size = 0;
|
396 |
-
this.network.weights.forEach((layer) => {
|
397 |
-
size += layer.flat().length;
|
398 |
-
});
|
399 |
-
return size + 3;
|
400 |
-
}
|
401 |
-
|
402 |
-
getActionSpaceSize() {
|
403 |
-
let size = 0;
|
404 |
-
this.network.weights.forEach((layer) => {
|
405 |
-
size += layer.flat().length * this.options.actionSpace;
|
406 |
-
});
|
407 |
-
return size;
|
408 |
-
}
|
409 |
-
|
410 |
-
getNetworkState() {
|
411 |
-
const flatWeights = this.network.weights
|
412 |
-
.map((layer) => layer.flat())
|
413 |
-
.flat();
|
414 |
-
return [...flatWeights, this.bestLoss, this.getCurrentLoss(), this.epsilon];
|
415 |
-
}
|
416 |
-
|
417 |
-
async getCurrentLoss() {
|
418 |
-
let totalLoss = 0;
|
419 |
-
for (const data of this.network.trainingData) {
|
420 |
-
const prediction = this.network.predict(data.input);
|
421 |
-
totalLoss += Math.abs(prediction[0] - data.output[0]);
|
422 |
-
}
|
423 |
-
return totalLoss / this.network.trainingData.length;
|
424 |
-
}
|
425 |
-
|
426 |
-
async updateMemoryCells(state) {
|
427 |
-
const forgetGate = this.gates.forget.predict(state);
|
428 |
-
const inputGate = this.gates.input.predict(state);
|
429 |
-
const outputGate = this.gates.output.predict(state);
|
430 |
-
const candidates = this.gates.candidates.predict(state);
|
431 |
-
|
432 |
-
for (let i = 0; i < this.options.memoryLayerSize; i++) {
|
433 |
-
this.memoryCells.cellState[i] *= forgetGate[i];
|
434 |
-
this.memoryCells.cellState[i] += inputGate[i] * candidates[i];
|
435 |
-
this.memoryCells.shortTerm[i] =
|
436 |
-
Math.tanh(this.memoryCells.cellState[i]) * outputGate[i];
|
437 |
-
this.memoryCells.longTerm[i] =
|
438 |
-
this.memoryCells.longTerm[i] * this.options.memoryCellDecay +
|
439 |
-
this.memoryCells.shortTerm[i] * (1 - this.options.memoryCellDecay);
|
440 |
-
}
|
441 |
-
}
|
442 |
-
|
443 |
-
async predictOutcomes(state) {
|
444 |
-
const input = [
|
445 |
-
...state,
|
446 |
-
...this.memoryCells.shortTerm,
|
447 |
-
...this.memoryCells.longTerm,
|
448 |
-
...this.memoryCells.cellState
|
449 |
-
];
|
450 |
-
return this.outcomePredictor.predict(input);
|
451 |
-
}
|
452 |
-
|
453 |
-
encodeAction(action) {
|
454 |
-
const encoded = new Array(this.getActionSpaceSize()).fill(0);
|
455 |
-
encoded[action] = 1;
|
456 |
-
return encoded;
|
457 |
-
}
|
458 |
-
|
459 |
-
async predictQValue(state, action) {
|
460 |
-
const encoded = this.encodeAction(action);
|
461 |
-
const input = [...state, ...encoded];
|
462 |
-
const qValue = this.qNetwork.predict(input);
|
463 |
-
return qValue[0];
|
464 |
-
}
|
465 |
-
|
466 |
-
simulateAction(state, action) {
|
467 |
-
const simState = [...state];
|
468 |
-
const updates = this.actionToWeightUpdates(action);
|
469 |
-
let stateIndex = 0;
|
470 |
-
|
471 |
-
for (const layer of updates) {
|
472 |
-
for (const row of layer) {
|
473 |
-
for (const update of row) {
|
474 |
-
simState[stateIndex] += update;
|
475 |
-
stateIndex++;
|
476 |
-
}
|
477 |
-
}
|
478 |
-
}
|
479 |
-
|
480 |
-
return simState;
|
481 |
-
}
|
482 |
-
|
483 |
-
async selectAction() {
|
484 |
-
if (Math.random() < this.epsilon) {
|
485 |
-
return Math.floor(Math.random() * this.getActionSpaceSize());
|
486 |
-
}
|
487 |
-
|
488 |
-
const state = this.getNetworkState();
|
489 |
-
await this.updateMemoryCells(state);
|
490 |
-
|
491 |
-
let bestAction = 0;
|
492 |
-
let bestOutcome = -Infinity;
|
493 |
-
|
494 |
-
for (let action = 0; action < this.getActionSpaceSize(); action++) {
|
495 |
-
const simState = this.simulateAction(state, action);
|
496 |
-
const outcomes = await this.predictOutcomes(simState);
|
497 |
-
|
498 |
-
const expectedValue = outcomes.reduce((sum, val, i) => {
|
499 |
-
return sum + val * Math.pow(this.options.gamma, i);
|
500 |
-
}, 0);
|
501 |
-
|
502 |
-
if (expectedValue > bestOutcome) {
|
503 |
-
bestOutcome = expectedValue;
|
504 |
-
bestAction = action;
|
505 |
-
}
|
506 |
-
}
|
507 |
-
|
508 |
-
return bestAction;
|
509 |
-
}
|
510 |
-
|
511 |
-
actionToWeightUpdates(action) {
|
512 |
-
const updates = [];
|
513 |
-
let actionIndex = action;
|
514 |
-
|
515 |
-
for (const layer of this.network.weights) {
|
516 |
-
const layerUpdate = [];
|
517 |
-
for (let i = 0; i < layer.length; i++) {
|
518 |
-
const rowUpdate = [];
|
519 |
-
for (let j = 0; j < layer[i].length; j++) {
|
520 |
-
const actionValue = actionIndex % this.options.actionSpace;
|
521 |
-
actionIndex = Math.floor(actionIndex / this.options.actionSpace);
|
522 |
-
const update =
|
523 |
-
((actionValue / (this.options.actionSpace - 1)) * 2 - 1) *
|
524 |
-
this.options.weightUpdateRange;
|
525 |
-
rowUpdate.push(update);
|
526 |
-
}
|
527 |
-
layerUpdate.push(rowUpdate);
|
528 |
-
}
|
529 |
-
updates.push(layerUpdate);
|
530 |
-
}
|
531 |
-
|
532 |
-
return updates;
|
533 |
-
}
|
534 |
-
|
535 |
-
async applyAction(action) {
|
536 |
-
const updates = this.actionToWeightUpdates(action);
|
537 |
-
for (let i = 0; i < this.network.weights.length; i++) {
|
538 |
-
for (let j = 0; j < this.network.weights[i].length; j++) {
|
539 |
-
for (let k = 0; k < this.network.weights[i][j].length; k++) {
|
540 |
-
this.network.weights[i][j][k] += updates[i][j][k];
|
541 |
-
}
|
542 |
-
}
|
543 |
-
}
|
544 |
-
}
|
545 |
-
|
546 |
-
calculateReward(oldLoss, newLoss) {
|
547 |
-
const improvement = oldLoss - newLoss;
|
548 |
-
const bestReward = newLoss < this.bestLoss ? 1.0 : 0.0;
|
549 |
-
return improvement + bestReward;
|
550 |
-
}
|
551 |
-
|
552 |
-
async getActualOutcomes(state, steps) {
|
553 |
-
const outcomes = [];
|
554 |
-
let currentState = state;
|
555 |
-
|
556 |
-
for (let i = 0; i < steps; i++) {
|
557 |
-
const loss = await this.getCurrentLoss();
|
558 |
-
outcomes.push(loss);
|
559 |
-
const action = await this.selectAction();
|
560 |
-
currentState = this.simulateAction(currentState, action);
|
561 |
-
}
|
562 |
-
|
563 |
-
return outcomes;
|
564 |
-
}
|
565 |
-
|
566 |
-
async trainOutcomePredictor(experience) {
|
567 |
-
const { state, nextState } = experience;
|
568 |
-
const actualOutcomes = await this.getActualOutcomes(
|
569 |
-
nextState,
|
570 |
-
this.options.predictionHorizon
|
571 |
-
);
|
572 |
-
|
573 |
-
const input = [
|
574 |
-
...state,
|
575 |
-
...this.memoryCells.shortTerm,
|
576 |
-
...this.memoryCells.longTerm,
|
577 |
-
...this.memoryCells.cellState
|
578 |
-
];
|
579 |
-
|
580 |
-
await this.outcomePredictor.train(
|
581 |
-
[
|
582 |
-
{
|
583 |
-
input: input,
|
584 |
-
output: actualOutcomes
|
585 |
-
}
|
586 |
-
],
|
587 |
-
{
|
588 |
-
epochs: 10,
|
589 |
-
learningRate: this.options.learningRate
|
590 |
-
}
|
591 |
-
);
|
592 |
-
}
|
593 |
-
|
594 |
-
async trainQNetwork(batch) {
|
595 |
-
for (const experience of batch) {
|
596 |
-
const { state, action, reward, nextState } = experience;
|
597 |
-
const currentQ = await this.predictQValue(state, action);
|
598 |
-
|
599 |
-
let maxNextQ = -Infinity;
|
600 |
-
for (let a = 0; a < this.getActionSpaceSize(); a++) {
|
601 |
-
const nextQ = await this.predictQValue(nextState, a);
|
602 |
-
maxNextQ = Math.max(maxNextQ, nextQ);
|
603 |
-
}
|
604 |
-
|
605 |
-
const targetQ = reward + this.options.gamma * maxNextQ;
|
606 |
-
const input = [...state, ...this.encodeAction(action)];
|
607 |
-
|
608 |
-
await this.qNetwork.train(
|
609 |
-
[
|
610 |
-
{
|
611 |
-
input: input,
|
612 |
-
output: [targetQ]
|
613 |
-
}
|
614 |
-
],
|
615 |
-
{
|
616 |
-
epochs: 10,
|
617 |
-
learningRate: this.options.learningRate
|
618 |
-
}
|
619 |
-
);
|
620 |
-
}
|
621 |
-
}
|
622 |
-
|
623 |
-
async update(currentLoss) {
|
624 |
-
const state = this.getNetworkState();
|
625 |
-
const action = await this.selectAction();
|
626 |
-
await this.applyAction(action);
|
627 |
-
const nextState = this.getNetworkState();
|
628 |
-
const newLoss = await this.getCurrentLoss();
|
629 |
-
const reward = this.calculateReward(currentLoss, newLoss);
|
630 |
-
|
631 |
-
const experience = {
|
632 |
-
state,
|
633 |
-
action,
|
634 |
-
reward,
|
635 |
-
nextState
|
636 |
-
};
|
637 |
-
|
638 |
-
this.memory.push(experience);
|
639 |
-
await this.trainOutcomePredictor(experience);
|
640 |
-
|
641 |
-
if (this.memory.length > this.options.memorySize) {
|
642 |
-
this.memory.shift();
|
643 |
-
}
|
644 |
-
|
645 |
-
if (this.memory.length >= this.options.batchSize) {
|
646 |
-
const batch = [];
|
647 |
-
for (let i = 0; i < this.options.batchSize; i++) {
|
648 |
-
const index = Math.floor(Math.random() * this.memory.length);
|
649 |
-
batch.push(this.memory[index]);
|
650 |
-
}
|
651 |
-
await this.trainQNetwork(batch);
|
652 |
-
}
|
653 |
-
|
654 |
-
if (newLoss < this.bestLoss) {
|
655 |
-
this.bestLoss = newLoss;
|
656 |
-
this.bestWeights = this.cloneWeights(this.network.weights);
|
657 |
-
}
|
658 |
-
|
659 |
-
this.epsilon = Math.max(
|
660 |
-
this.options.epsilonMin,
|
661 |
-
this.epsilon * this.options.epsilonDecay
|
662 |
-
);
|
663 |
-
|
664 |
-
return {
|
665 |
-
loss: newLoss,
|
666 |
-
bestLoss: this.bestLoss,
|
667 |
-
epsilon: this.epsilon
|
668 |
-
};
|
669 |
-
}
|
670 |
-
|
671 |
-
cloneWeights(weights) {
|
672 |
-
return weights.map((layer) => layer.map((row) => [...row]));
|
673 |
-
}
|
674 |
-
}
|
675 |
-
// 🧠 carbono: A Fun and Friendly Neural Network Class 🧠
|
676 |
-
// This micro-library wraps everything you need to have
|
677 |
-
// This is the simplest yet functional feedforward mlp in js
|
678 |
-
class carbono {
|
679 |
constructor(debug = true) {
|
680 |
-
this.layers = [];
|
681 |
-
this.weights = [];
|
682 |
-
this.biases = [];
|
683 |
-
this.activations = [];
|
684 |
-
this.details = {};
|
685 |
-
this.debug = debug;
|
|
|
686 |
}
|
687 |
|
688 |
-
//
|
689 |
-
|
690 |
-
console.log("Reinforcement Learning Activated");
|
691 |
-
this.rl = new ReinforcementModule(this, options);
|
692 |
-
return this.rl;
|
693 |
-
}
|
694 |
-
|
695 |
-
// 🏗️ Add a new layer to the neural network
|
696 |
-
layer(inputSize, outputSize, activation = "tanh") {
|
697 |
-
// 🧱 Store layer information
|
698 |
this.layers.push({
|
699 |
inputSize,
|
700 |
outputSize,
|
701 |
activation
|
702 |
});
|
703 |
-
// 🔍 Check if the new layer's input size matches the previous layer's output size
|
704 |
if (this.weights.length > 0) {
|
705 |
-
const lastLayerOutputSize = this.layers[this.layers.length - 2]
|
706 |
-
.outputSize;
|
707 |
if (inputSize !== lastLayerOutputSize) {
|
708 |
-
throw new Error(
|
709 |
-
"Oops! The input size of the new layer must match the output size of the previous layer."
|
710 |
-
);
|
711 |
}
|
712 |
}
|
713 |
-
// 🎲 Initialize weights using Xavier/Glorot initialization
|
714 |
const weights = [];
|
715 |
for (let i = 0; i < outputSize; i++) {
|
716 |
const row = [];
|
717 |
for (let j = 0; j < inputSize; j++) {
|
718 |
-
row.push(
|
719 |
-
(Math.random() - 0.5) * 2 * Math.sqrt(6 / (inputSize + outputSize))
|
720 |
-
);
|
721 |
}
|
722 |
weights.push(row);
|
723 |
}
|
724 |
this.weights.push(weights);
|
725 |
-
// 🎚️ Initialize biases with small positive values
|
726 |
const biases = Array(outputSize).fill(0.01);
|
727 |
this.biases.push(biases);
|
728 |
-
// 🚀 Store the activation function for this layer
|
729 |
this.activations.push(activation);
|
730 |
}
|
731 |
-
|
|
|
732 |
activationFunction(x, activation) {
|
733 |
switch (activation) {
|
734 |
-
case
|
735 |
-
return Math.tanh(x);
|
736 |
-
case
|
737 |
-
return 1 / (1 + Math.exp(-x));
|
738 |
-
case
|
739 |
-
return Math.max(0, x);
|
740 |
-
case
|
741 |
const alpha = 1.67326;
|
742 |
const scale = 1.0507;
|
743 |
-
return x > 0 ? scale * x : scale * alpha * (Math.exp(x) - 1);
|
744 |
default:
|
745 |
-
throw new Error(
|
746 |
}
|
747 |
}
|
748 |
-
|
|
|
749 |
activationDerivative(x, activation) {
|
750 |
switch (activation) {
|
751 |
-
case
|
752 |
return 1 - Math.pow(Math.tanh(x), 2);
|
753 |
-
case
|
754 |
const sigmoid = 1 / (1 + Math.exp(-x));
|
755 |
return sigmoid * (1 - sigmoid);
|
756 |
-
case
|
757 |
return x > 0 ? 1 : 0;
|
758 |
-
case
|
759 |
const alpha = 1.67326;
|
760 |
const scale = 1.0507;
|
761 |
return x > 0 ? scale : scale * alpha * Math.exp(x);
|
762 |
default:
|
763 |
-
throw new Error(
|
764 |
-
|
765 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
766 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
767 |
}
|
768 |
-
|
|
|
769 |
async train(trainSet, options = {}) {
|
770 |
-
// 🎛️ Set up training options with default values
|
771 |
const {
|
772 |
-
epochs = 200,
|
773 |
-
learningRate = 0.212,
|
774 |
-
batchSize = 16,
|
775 |
-
printEveryEpochs = 100,
|
776 |
-
earlyStopThreshold = 1e-6,
|
777 |
-
testSet = null,
|
778 |
-
callback = null
|
779 |
} = options;
|
780 |
-
const start = Date.now();
|
781 |
-
// 🛡️ Make sure batch size is at least 2
|
782 |
if (batchSize < 1) batchSize = 2;
|
783 |
-
// 🏗️ Automatically create layers if none exist
|
784 |
if (this.layers.length === 0) {
|
785 |
const numInputs = trainSet[0].input.length;
|
786 |
-
this.layer(numInputs, numInputs,
|
787 |
-
this.layer(numInputs, 1,
|
788 |
}
|
789 |
let lastTrainLoss = 0;
|
790 |
let lastTestLoss = null;
|
791 |
-
|
|
|
|
|
|
|
|
|
792 |
for (let epoch = 0; epoch < epochs; epoch++) {
|
793 |
let trainError = 0;
|
794 |
-
// 📦 Process data in batches
|
795 |
for (let b = 0; b < trainSet.length; b += batchSize) {
|
796 |
const batch = trainSet.slice(b, b + batchSize);
|
797 |
let batchError = 0;
|
798 |
-
// 🧠 Forward pass and backward pass for each item in the batch
|
799 |
for (const data of batch) {
|
800 |
-
// 🏃♂️ Forward pass
|
801 |
const layerInputs = [data.input];
|
802 |
for (let i = 0; i < this.weights.length; i++) {
|
803 |
const inputs = layerInputs[i];
|
@@ -815,7 +499,6 @@ class carbono {
|
|
815 |
}
|
816 |
layerInputs.push(outputs);
|
817 |
}
|
818 |
-
// 🔙 Backward pass
|
819 |
const outputLayerIndex = this.weights.length - 1;
|
820 |
const outputLayerInputs = layerInputs[layerInputs.length - 1];
|
821 |
const outputErrors = [];
|
@@ -835,17 +518,10 @@ class carbono {
|
|
835 |
for (let k = 0; k < this.layers[i + 1].outputSize; k++) {
|
836 |
error += nextLayerErrors[k] * nextLayerWeights[k][j];
|
837 |
}
|
838 |
-
errors.push(
|
839 |
-
error *
|
840 |
-
this.activationDerivative(
|
841 |
-
currentLayerInputs[j],
|
842 |
-
currentActivation
|
843 |
-
)
|
844 |
-
);
|
845 |
}
|
846 |
layerErrors.unshift(errors);
|
847 |
}
|
848 |
-
// 🔧 Update weights and biases
|
849 |
for (let i = 0; i < this.weights.length; i++) {
|
850 |
const inputs = layerInputs[i];
|
851 |
const errors = layerErrors[i];
|
@@ -859,16 +535,11 @@ class carbono {
|
|
859 |
biases[j] += learningRate * errors[j];
|
860 |
}
|
861 |
}
|
862 |
-
batchError += Math.abs(outputErrors[0]);
|
863 |
}
|
864 |
trainError += batchError;
|
865 |
}
|
866 |
lastTrainLoss = trainError / trainSet.length;
|
867 |
-
// 🎮 Apply reinforcement learning if initialized
|
868 |
-
if (this.rl) {
|
869 |
-
this.rl.update(lastTrainLoss);
|
870 |
-
}
|
871 |
-
// 🧪 Evaluate on test set if provided
|
872 |
if (testSet) {
|
873 |
let testError = 0;
|
874 |
for (const data of testSet) {
|
@@ -877,44 +548,38 @@ class carbono {
|
|
877 |
}
|
878 |
lastTestLoss = testError / testSet.length;
|
879 |
}
|
880 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
881 |
if ((epoch + 1) % printEveryEpochs === 0 && this.debug === true) {
|
882 |
-
console.log(
|
883 |
-
`Epoch ${epoch + 1}, Train Loss: ${lastTrainLoss.toFixed(6)}${
|
884 |
-
testSet ? `, Test Loss: ${lastTestLoss.toFixed(6)}` : ""
|
885 |
-
}`
|
886 |
-
);
|
887 |
}
|
888 |
-
// 📡 Call the callback function with current progress
|
889 |
if (callback) {
|
890 |
-
await callback(epoch + 1, lastTrainLoss, lastTestLoss);
|
891 |
}
|
892 |
-
|
893 |
-
await new Promise((resolve) => setTimeout(resolve, 0));
|
894 |
-
// 🛑 Check for early stopping
|
895 |
if (lastTrainLoss < earlyStopThreshold) {
|
896 |
-
console.log(
|
897 |
-
`We stopped at epoch ${
|
898 |
-
epoch + 1
|
899 |
-
} with train loss: ${lastTrainLoss.toFixed(6)}${
|
900 |
-
testSet ? ` and test loss: ${lastTestLoss.toFixed(6)}` : ""
|
901 |
-
}`
|
902 |
-
);
|
903 |
break;
|
904 |
}
|
905 |
}
|
906 |
-
const end = Date.now();
|
907 |
-
// 🧮 Calculate total number of parameters
|
908 |
let totalParams = 0;
|
909 |
for (let i = 0; i < this.weights.length; i++) {
|
910 |
const weightLayer = this.weights[i];
|
911 |
const biasLayer = this.biases[i];
|
912 |
totalParams += weightLayer.flat().length + biasLayer.length;
|
913 |
}
|
914 |
-
// 📊 Create a summary of the training
|
915 |
const trainingSummary = {
|
916 |
trainLoss: lastTrainLoss,
|
917 |
testLoss: lastTestLoss,
|
|
|
918 |
parameters: totalParams,
|
919 |
training: {
|
920 |
time: end - start,
|
@@ -922,7 +587,7 @@ class carbono {
|
|
922 |
learningRate,
|
923 |
batchSize
|
924 |
},
|
925 |
-
layers: this.layers.map(
|
926 |
inputSize: layer.inputSize,
|
927 |
outputSize: layer.outputSize,
|
928 |
activation: layer.activation
|
@@ -931,11 +596,12 @@ class carbono {
|
|
931 |
this.details = trainingSummary;
|
932 |
return trainingSummary;
|
933 |
}
|
934 |
-
|
|
|
935 |
predict(input) {
|
936 |
let layerInput = input;
|
937 |
-
const allActivations = [input];
|
938 |
-
const allRawValues = [];
|
939 |
for (let i = 0; i < this.weights.length; i++) {
|
940 |
const weights = this.weights[i];
|
941 |
const biases = this.biases[i];
|
@@ -955,13 +621,13 @@ class carbono {
|
|
955 |
allActivations.push(layerOutput);
|
956 |
layerInput = layerOutput;
|
957 |
}
|
958 |
-
// Store last activation values for visualization
|
959 |
this.lastActivations = allActivations;
|
960 |
this.lastRawValues = allRawValues;
|
961 |
return layerInput;
|
962 |
}
|
963 |
-
|
964 |
-
|
|
|
965 |
const data = {
|
966 |
weights: this.weights,
|
967 |
biases: this.biases,
|
@@ -970,16 +636,17 @@ class carbono {
|
|
970 |
details: this.details
|
971 |
};
|
972 |
const blob = new Blob([JSON.stringify(data)], {
|
973 |
-
type:
|
974 |
});
|
975 |
const url = URL.createObjectURL(blob);
|
976 |
-
const a = document.createElement(
|
977 |
a.href = url;
|
978 |
a.download = `${name}.json`;
|
979 |
a.click();
|
980 |
URL.revokeObjectURL(url);
|
981 |
}
|
982 |
-
|
|
|
983 |
load(callback) {
|
984 |
const handleListener = (event) => {
|
985 |
const file = event.target.files[0];
|
@@ -995,23 +662,23 @@ class carbono {
|
|
995 |
this.layers = data.layers;
|
996 |
this.details = data.details;
|
997 |
callback();
|
998 |
-
if (this.debug === true) console.log(
|
999 |
-
input.removeEventListener(
|
1000 |
input.remove();
|
1001 |
} catch (e) {
|
1002 |
-
input.removeEventListener(
|
1003 |
input.remove();
|
1004 |
-
if (this.debug === true) console.error(
|
1005 |
}
|
1006 |
};
|
1007 |
reader.readAsText(file);
|
1008 |
};
|
1009 |
-
const input = document.createElement(
|
1010 |
-
input.type =
|
1011 |
-
input.accept =
|
1012 |
-
input.style.opacity =
|
1013 |
document.body.append(input);
|
1014 |
-
input.addEventListener(
|
1015 |
input.click();
|
1016 |
}
|
1017 |
}
|
|
|
318 |
</div>
|
319 |
|
320 |
<script>
|
321 |
+
class carbono {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
constructor(debug = true) {
|
323 |
+
this.layers = [];
|
324 |
+
this.weights = [];
|
325 |
+
this.biases = [];
|
326 |
+
this.activations = [];
|
327 |
+
this.details = {};
|
328 |
+
this.debug = debug;
|
329 |
+
this.fewShotSamples = [];
|
330 |
}
|
331 |
|
332 |
+
// Add a new layer to the neural network
|
333 |
+
layer(inputSize, outputSize, activation = 'tanh') {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
this.layers.push({
|
335 |
inputSize,
|
336 |
outputSize,
|
337 |
activation
|
338 |
});
|
|
|
339 |
if (this.weights.length > 0) {
|
340 |
+
const lastLayerOutputSize = this.layers[this.layers.length - 2].outputSize;
|
|
|
341 |
if (inputSize !== lastLayerOutputSize) {
|
342 |
+
throw new Error('Oops! The input size of the new layer must match the output size of the previous layer.');
|
|
|
|
|
343 |
}
|
344 |
}
|
|
|
345 |
const weights = [];
|
346 |
for (let i = 0; i < outputSize; i++) {
|
347 |
const row = [];
|
348 |
for (let j = 0; j < inputSize; j++) {
|
349 |
+
row.push((Math.random() - 0.5) * 2 * Math.sqrt(6 / (inputSize + outputSize)));
|
|
|
|
|
350 |
}
|
351 |
weights.push(row);
|
352 |
}
|
353 |
this.weights.push(weights);
|
|
|
354 |
const biases = Array(outputSize).fill(0.01);
|
355 |
this.biases.push(biases);
|
|
|
356 |
this.activations.push(activation);
|
357 |
}
|
358 |
+
|
359 |
+
// Apply the activation function
|
360 |
activationFunction(x, activation) {
|
361 |
switch (activation) {
|
362 |
+
case 'tanh':
|
363 |
+
return Math.tanh(x);
|
364 |
+
case 'sigmoid':
|
365 |
+
return 1 / (1 + Math.exp(-x));
|
366 |
+
case 'relu':
|
367 |
+
return Math.max(0, x);
|
368 |
+
case 'selu':
|
369 |
const alpha = 1.67326;
|
370 |
const scale = 1.0507;
|
371 |
+
return x > 0 ? scale * x : scale * alpha * (Math.exp(x) - 1);
|
372 |
default:
|
373 |
+
throw new Error('Whoops! We don\'t know that activation function.');
|
374 |
}
|
375 |
}
|
376 |
+
|
377 |
+
// Calculate the derivative of the activation function
|
378 |
activationDerivative(x, activation) {
|
379 |
switch (activation) {
|
380 |
+
case 'tanh':
|
381 |
return 1 - Math.pow(Math.tanh(x), 2);
|
382 |
+
case 'sigmoid':
|
383 |
const sigmoid = 1 / (1 + Math.exp(-x));
|
384 |
return sigmoid * (1 - sigmoid);
|
385 |
+
case 'relu':
|
386 |
return x > 0 ? 1 : 0;
|
387 |
+
case 'selu':
|
388 |
const alpha = 1.67326;
|
389 |
const scale = 1.0507;
|
390 |
return x > 0 ? scale : scale * alpha * Math.exp(x);
|
391 |
default:
|
392 |
+
throw new Error('Oops! We don\'t know the derivative of that activation function.');
|
393 |
+
}
|
394 |
+
}
|
395 |
+
|
396 |
+
// Generate few-shot samples
|
397 |
+
generateFewShotSamples(trainSet, numSamples = 10) {
|
398 |
+
const fewShotSamples = [];
|
399 |
+
for (let i = 0; i < numSamples; i++) {
|
400 |
+
const randomIndex = Math.floor(Math.random() * trainSet.length);
|
401 |
+
fewShotSamples.push(trainSet[randomIndex]);
|
402 |
+
}
|
403 |
+
return fewShotSamples;
|
404 |
+
}
|
405 |
+
|
406 |
+
// Positional Encoding
|
407 |
+
positionalEncoding(input, maxLen) {
|
408 |
+
const pe = new Array(maxLen).fill(0).map((_, pos) => {
|
409 |
+
return new Array(input[0].length).fill(0).map((_, i) => {
|
410 |
+
const angle = pos / Math.pow(10000, 2 * i / input[0].length);
|
411 |
+
return pos % 2 === 0 ? Math.sin(angle) : Math.cos(angle);
|
412 |
+
});
|
413 |
+
});
|
414 |
+
return input.map((seq, idx) => seq.map((val, i) => val + pe[idx][i]));
|
415 |
+
}
|
416 |
+
|
417 |
+
// Simplified Multi-Head Self-Attention
|
418 |
+
multiHeadSelfAttention(input, numHeads = 2) {
|
419 |
+
const headSize = input[0].length / numHeads;
|
420 |
+
const heads = new Array(numHeads).fill(0).map(() => new Array(input.length).fill(0).map(() => new Array(headSize).fill(0)));
|
421 |
+
for (let h = 0; h < numHeads; h++) {
|
422 |
+
for (let i = 0; i < input.length; i++) {
|
423 |
+
for (let j = 0; j < headSize; j++) {
|
424 |
+
heads[h][i][j] = input[i][h * headSize + j];
|
425 |
+
}
|
426 |
+
}
|
427 |
}
|
428 |
+
const attentionScores = new Array(numHeads).fill(0).map(() => new Array(input.length).fill(0).map(() => new Array(input.length).fill(0)));
|
429 |
+
for (let h = 0; h < numHeads; h++) {
|
430 |
+
for (let i = 0; i < input.length; i++) {
|
431 |
+
for (let j = 0; j < input.length; j++) {
|
432 |
+
let score = 0;
|
433 |
+
for (let k = 0; k < headSize; k++) {
|
434 |
+
score += heads[h][i][k] * heads[h][j][k];
|
435 |
+
}
|
436 |
+
attentionScores[h][i][j] = score;
|
437 |
+
}
|
438 |
+
}
|
439 |
+
}
|
440 |
+
const attentionWeights = attentionScores.map(head => head.map(row => row.map(score => Math.exp(score) / row.reduce((sum, s) => sum + Math.exp(s), 0))));
|
441 |
+
const output = new Array(input.length).fill(0).map(() => new Array(input[0].length).fill(0));
|
442 |
+
for (let h = 0; h < numHeads; h++) {
|
443 |
+
for (let i = 0; i < input.length; i++) {
|
444 |
+
for (let j = 0; j < headSize; j++) {
|
445 |
+
for (let k = 0; k < input.length; k++) {
|
446 |
+
output[i][h * headSize + j] += attentionWeights[h][i][k] * heads[h][k][j];
|
447 |
+
}
|
448 |
+
}
|
449 |
+
}
|
450 |
+
}
|
451 |
+
return output;
|
452 |
}
|
453 |
+
|
454 |
+
// Train the neural network
|
455 |
async train(trainSet, options = {}) {
|
|
|
456 |
const {
|
457 |
+
epochs = 200,
|
458 |
+
learningRate = 0.212,
|
459 |
+
batchSize = 16,
|
460 |
+
printEveryEpochs = 100,
|
461 |
+
earlyStopThreshold = 1e-6,
|
462 |
+
testSet = null,
|
463 |
+
callback = null
|
464 |
} = options;
|
465 |
+
const start = Date.now();
|
|
|
466 |
if (batchSize < 1) batchSize = 2;
|
|
|
467 |
if (this.layers.length === 0) {
|
468 |
const numInputs = trainSet[0].input.length;
|
469 |
+
this.layer(numInputs, numInputs, 'tanh');
|
470 |
+
this.layer(numInputs, 1, 'tanh');
|
471 |
}
|
472 |
let lastTrainLoss = 0;
|
473 |
let lastTestLoss = null;
|
474 |
+
let lastFewShotLoss = null;
|
475 |
+
|
476 |
+
// Generate few-shot samples
|
477 |
+
this.fewShotSamples = this.generateFewShotSamples(trainSet);
|
478 |
+
|
479 |
for (let epoch = 0; epoch < epochs; epoch++) {
|
480 |
let trainError = 0;
|
|
|
481 |
for (let b = 0; b < trainSet.length; b += batchSize) {
|
482 |
const batch = trainSet.slice(b, b + batchSize);
|
483 |
let batchError = 0;
|
|
|
484 |
for (const data of batch) {
|
|
|
485 |
const layerInputs = [data.input];
|
486 |
for (let i = 0; i < this.weights.length; i++) {
|
487 |
const inputs = layerInputs[i];
|
|
|
499 |
}
|
500 |
layerInputs.push(outputs);
|
501 |
}
|
|
|
502 |
const outputLayerIndex = this.weights.length - 1;
|
503 |
const outputLayerInputs = layerInputs[layerInputs.length - 1];
|
504 |
const outputErrors = [];
|
|
|
518 |
for (let k = 0; k < this.layers[i + 1].outputSize; k++) {
|
519 |
error += nextLayerErrors[k] * nextLayerWeights[k][j];
|
520 |
}
|
521 |
+
errors.push(error * this.activationDerivative(currentLayerInputs[j], currentActivation));
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
}
|
523 |
layerErrors.unshift(errors);
|
524 |
}
|
|
|
525 |
for (let i = 0; i < this.weights.length; i++) {
|
526 |
const inputs = layerInputs[i];
|
527 |
const errors = layerErrors[i];
|
|
|
535 |
biases[j] += learningRate * errors[j];
|
536 |
}
|
537 |
}
|
538 |
+
batchError += Math.abs(outputErrors[0]);
|
539 |
}
|
540 |
trainError += batchError;
|
541 |
}
|
542 |
lastTrainLoss = trainError / trainSet.length;
|
|
|
|
|
|
|
|
|
|
|
543 |
if (testSet) {
|
544 |
let testError = 0;
|
545 |
for (const data of testSet) {
|
|
|
548 |
}
|
549 |
lastTestLoss = testError / testSet.length;
|
550 |
}
|
551 |
+
|
552 |
+
// Evaluate on few-shot samples
|
553 |
+
let fewShotError = 0;
|
554 |
+
for (const data of this.fewShotSamples) {
|
555 |
+
const prediction = this.predict(data.input);
|
556 |
+
fewShotError += Math.abs(data.output[0] - prediction[0]);
|
557 |
+
}
|
558 |
+
lastFewShotLoss = fewShotError / this.fewShotSamples.length;
|
559 |
+
|
560 |
if ((epoch + 1) % printEveryEpochs === 0 && this.debug === true) {
|
561 |
+
console.log(`Epoch ${epoch + 1}, Train Loss: ${lastTrainLoss.toFixed(6)}${testSet ? `, Test Loss: ${lastTestLoss.toFixed(6)}` : ''}, Few-Shot Loss: ${lastFewShotLoss.toFixed(6)}`);
|
|
|
|
|
|
|
|
|
562 |
}
|
|
|
563 |
if (callback) {
|
564 |
+
await callback(epoch + 1, lastTrainLoss, lastTestLoss, lastFewShotLoss);
|
565 |
}
|
566 |
+
await new Promise(resolve => setTimeout(resolve, 0));
|
|
|
|
|
567 |
if (lastTrainLoss < earlyStopThreshold) {
|
568 |
+
console.log(`We stopped at epoch ${epoch + 1} with train loss: ${lastTrainLoss.toFixed(6)}${testSet ? ` and test loss: ${lastTestLoss.toFixed(6)}` : ''} and few-shot loss: ${lastFewShotLoss.toFixed(6)}`);
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
break;
|
570 |
}
|
571 |
}
|
572 |
+
const end = Date.now();
|
|
|
573 |
let totalParams = 0;
|
574 |
for (let i = 0; i < this.weights.length; i++) {
|
575 |
const weightLayer = this.weights[i];
|
576 |
const biasLayer = this.biases[i];
|
577 |
totalParams += weightLayer.flat().length + biasLayer.length;
|
578 |
}
|
|
|
579 |
const trainingSummary = {
|
580 |
trainLoss: lastTrainLoss,
|
581 |
testLoss: lastTestLoss,
|
582 |
+
fewShotLoss: lastFewShotLoss,
|
583 |
parameters: totalParams,
|
584 |
training: {
|
585 |
time: end - start,
|
|
|
587 |
learningRate,
|
588 |
batchSize
|
589 |
},
|
590 |
+
layers: this.layers.map(layer => ({
|
591 |
inputSize: layer.inputSize,
|
592 |
outputSize: layer.outputSize,
|
593 |
activation: layer.activation
|
|
|
596 |
this.details = trainingSummary;
|
597 |
return trainingSummary;
|
598 |
}
|
599 |
+
|
600 |
+
// Use the trained network to make predictions
|
601 |
predict(input) {
|
602 |
let layerInput = input;
|
603 |
+
const allActivations = [input];
|
604 |
+
const allRawValues = [];
|
605 |
for (let i = 0; i < this.weights.length; i++) {
|
606 |
const weights = this.weights[i];
|
607 |
const biases = this.biases[i];
|
|
|
621 |
allActivations.push(layerOutput);
|
622 |
layerInput = layerOutput;
|
623 |
}
|
|
|
624 |
this.lastActivations = allActivations;
|
625 |
this.lastRawValues = allRawValues;
|
626 |
return layerInput;
|
627 |
}
|
628 |
+
|
629 |
+
// Save the model to a file
|
630 |
+
save(name = 'model') {
|
631 |
const data = {
|
632 |
weights: this.weights,
|
633 |
biases: this.biases,
|
|
|
636 |
details: this.details
|
637 |
};
|
638 |
const blob = new Blob([JSON.stringify(data)], {
|
639 |
+
type: 'application/json'
|
640 |
});
|
641 |
const url = URL.createObjectURL(blob);
|
642 |
+
const a = document.createElement('a');
|
643 |
a.href = url;
|
644 |
a.download = `${name}.json`;
|
645 |
a.click();
|
646 |
URL.revokeObjectURL(url);
|
647 |
}
|
648 |
+
|
649 |
+
// Load a saved model from a file
|
650 |
load(callback) {
|
651 |
const handleListener = (event) => {
|
652 |
const file = event.target.files[0];
|
|
|
662 |
this.layers = data.layers;
|
663 |
this.details = data.details;
|
664 |
callback();
|
665 |
+
if (this.debug === true) console.log('Model loaded successfully!');
|
666 |
+
input.removeEventListener('change', handleListener);
|
667 |
input.remove();
|
668 |
} catch (e) {
|
669 |
+
input.removeEventListener('change', handleListener);
|
670 |
input.remove();
|
671 |
+
if (this.debug === true) console.error('Failed to load model:', e);
|
672 |
}
|
673 |
};
|
674 |
reader.readAsText(file);
|
675 |
};
|
676 |
+
const input = document.createElement('input');
|
677 |
+
input.type = 'file';
|
678 |
+
input.accept = '.json';
|
679 |
+
input.style.opacity = '0';
|
680 |
document.body.append(input);
|
681 |
+
input.addEventListener('change', handleListener.bind(this));
|
682 |
input.click();
|
683 |
}
|
684 |
}
|