visor841 commited on
Commit
799b817
·
1 Parent(s): 21bfa5f

Add python file and requirements

Browse files
Files changed (2) hide show
  1. app.py +65 -0
  2. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import numpy as np
3
+ import gradio as gr
4
+
5
+ HEXACO = [
6
+ "honesty-humility",
7
+ "emotionality",
8
+ "extraversion",
9
+ "agreeableness",
10
+ "conscientiousness",
11
+ "openness to experience"
12
+ ]
13
+
14
+ def netScores(tagList: list, sequence_to_classify: str, modelName: str) -> dict:
15
+ classifier = pipeline("zero-shot-classification", model=modelName)
16
+ hypothesis_template_pos = "This example is {}"
17
+ hypothesis_template_neg = "This example is not {}"
18
+ output_pos = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_pos, multi_label=True)
19
+ output_neg = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_neg, multi_label=True)
20
+
21
+ positive_scores = {}
22
+ for x in range(len(tagList)):
23
+ positive_scores[output_pos["labels"][x]] = output_pos["scores"][x]
24
+
25
+ negative_scores = {}
26
+ for x in range(len(tagList)):
27
+ negative_scores[output_neg["labels"][x]] = output_neg["scores"][x]
28
+
29
+ pos_neg_scores = {}
30
+ for tag in tagList:
31
+ pos_neg_scores[tag] = [positive_scores[tag],negative_scores[tag]]
32
+
33
+ net_scores = {}
34
+ for tag in tagList:
35
+ net_scores[tag] = positive_scores[tag]-negative_scores[tag]
36
+
37
+ net_scores = dict(sorted(net_scores.items(), key=lambda x:x[1], reverse=True))
38
+
39
+ return net_scores
40
+
41
+ def scoresMatch(tagList: list, scoresA: dict, scoresB: dict):
42
+ maxDistance = 2*np.sqrt(len(tagList))
43
+ differenceSquares = []
44
+ for tag in tagList:
45
+ difference = (scoresA[tag] - scoresB[tag])
46
+ differenceSquare = difference*difference
47
+ differenceSquares.append(differenceSquare)
48
+ distance = np.sqrt(np.sum(differenceSquares))
49
+ percentDifference = distance/maxDistance
50
+
51
+ return 1-percentDifference
52
+
53
+ def compareDocuments (userText1, userText2):
54
+ scores1 = netScores (HEXACO, userText1, 'akhtet/mDeBERTa-v3-base-myXNLI')
55
+ scores2 = netScores (HEXACO, userText2, 'akhtet/mDeBERTa-v3-base-myXNLI')
56
+
57
+ return scoresMatch(HEXACO, scores1, scores2)
58
+
59
+
60
+ demo = gr.Interface(
61
+ fn=compareDocuments,
62
+ inputs=["text", "text"],
63
+ outputs=["text"],
64
+ )
65
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ numpy