Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- HfApi_testing.Rmd +27 -0
- app.py +11 -0
- python_chunk.Rmd +19 -0
- requirements.txt +2 -0
HfApi_testing.Rmd
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "hfhub_testing"
|
3 |
+
output: html_document
|
4 |
+
date: "2024-04-04"
|
5 |
+
---
|
6 |
+
|
7 |
+
```{r setup, include=FALSE}
|
8 |
+
knitr::opts_chunk$set(echo = TRUE)
|
9 |
+
```
|
10 |
+
|
11 |
+
```{r}
|
12 |
+
hf <- reticulate::import("huggingface_hub")
|
13 |
+
api <- hf$HfApi()
|
14 |
+
|
15 |
+
repo_id <- "aoiferyan/api_second_attempt"
|
16 |
+
api$create_repo(repo_id = repo_id, repo_type="space", space_sdk="gradio")
|
17 |
+
|
18 |
+
api$upload_folder(repo_id = repo_id, repo_type="space", folder_path="/Users/aoiferyan/Library/CloudStorage/[email protected]/My Drive/Big Think/bigThink_5Apr2024/HfApi_testing")
|
19 |
+
|
20 |
+
space_hardware <- hf$SpaceHardware
|
21 |
+
|
22 |
+
api$request_space_hardware(repo_id = repo_id, hardware = space_hardware$CPU_BASIC)
|
23 |
+
|
24 |
+
api$delete_file(repo_id = repo_id, path_in_repo = "HfApi_testing.Rmd")
|
25 |
+
```
|
26 |
+
|
27 |
+
|
app.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
5 |
+
|
6 |
+
model = SentenceTransformer('sentence-transformers/all-miniLM-L6-v2')
|
7 |
+
embeddings = model.encode(sentences)
|
8 |
+
|
9 |
+
embeddings_df = pd.DataFrame(embeddings)
|
10 |
+
|
11 |
+
embeddings_df.to_csv("embeddings.csv")
|
python_chunk.Rmd
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "Untitled"
|
3 |
+
output: html_document
|
4 |
+
date: "2024-04-04"
|
5 |
+
---
|
6 |
+
|
7 |
+
```{python}
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
12 |
+
|
13 |
+
model = SentenceTransformer('sentence-transformers/all-miniLM-L6-v2')
|
14 |
+
embeddings = model.encode(sentences)
|
15 |
+
|
16 |
+
embeddings_df = pd.DataFrame(embeddings)
|
17 |
+
|
18 |
+
embeddings_df.to_csv("embeddings.csv")
|
19 |
+
```
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
pandas
|