aoiferyan commited on
Commit
ff3f7f1
·
verified ·
1 Parent(s): 2dcb0e0

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. HfApi_testing.Rmd +27 -0
  2. app.py +11 -0
  3. python_chunk.Rmd +19 -0
  4. requirements.txt +2 -0
HfApi_testing.Rmd ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "hfhub_testing"
3
+ output: html_document
4
+ date: "2024-04-04"
5
+ ---
6
+
7
+ ```{r setup, include=FALSE}
8
+ knitr::opts_chunk$set(echo = TRUE)
9
+ ```
10
+
11
+ ```{r}
12
+ hf <- reticulate::import("huggingface_hub")
13
+ api <- hf$HfApi()
14
+
15
+ repo_id <- "aoiferyan/api_second_attempt"
16
+ api$create_repo(repo_id = repo_id, repo_type="space", space_sdk="gradio")
17
+
18
+ api$upload_folder(repo_id = repo_id, repo_type="space", folder_path="/Users/aoiferyan/Library/CloudStorage/[email protected]/My Drive/Big Think/bigThink_5Apr2024/HfApi_testing")
19
+
20
+ space_hardware <- hf$SpaceHardware
21
+
22
+ api$request_space_hardware(repo_id = repo_id, hardware = space_hardware$CPU_BASIC)
23
+
24
+ api$delete_file(repo_id = repo_id, path_in_repo = "HfApi_testing.Rmd")
25
+ ```
26
+
27
+
app.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer
2
+ import pandas as pd
3
+
4
+ sentences = ["This is an example sentence", "Each sentence is converted"]
5
+
6
+ model = SentenceTransformer('sentence-transformers/all-miniLM-L6-v2')
7
+ embeddings = model.encode(sentences)
8
+
9
+ embeddings_df = pd.DataFrame(embeddings)
10
+
11
+ embeddings_df.to_csv("embeddings.csv")
python_chunk.Rmd ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "Untitled"
3
+ output: html_document
4
+ date: "2024-04-04"
5
+ ---
6
+
7
+ ```{python}
8
+ from sentence_transformers import SentenceTransformer
9
+ import pandas as pd
10
+
11
+ sentences = ["This is an example sentence", "Each sentence is converted"]
12
+
13
+ model = SentenceTransformer('sentence-transformers/all-miniLM-L6-v2')
14
+ embeddings = model.encode(sentences)
15
+
16
+ embeddings_df = pd.DataFrame(embeddings)
17
+
18
+ embeddings_df.to_csv("embeddings.csv")
19
+ ```
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ sentence-transformers
2
+ pandas