Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gradio as gr
|
|
| 3 |
import torch
|
| 4 |
import torchaudio
|
| 5 |
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
|
|
|
|
| 6 |
|
| 7 |
model = AutoModelForCTC.from_pretrained("anzorq/w2v-bert-2.0-kbd")
|
| 8 |
processor = Wav2Vec2BertProcessor.from_pretrained("anzorq/w2v-bert-2.0-kbd")
|
|
@@ -40,11 +41,43 @@ def transcribe_speech(audio):
|
|
| 40 |
|
| 41 |
return pred_text
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
| 3 |
import torch
|
| 4 |
import torchaudio
|
| 5 |
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
|
| 6 |
+
import yt_dlp
|
| 7 |
|
| 8 |
model = AutoModelForCTC.from_pretrained("anzorq/w2v-bert-2.0-kbd")
|
| 9 |
processor = Wav2Vec2BertProcessor.from_pretrained("anzorq/w2v-bert-2.0-kbd")
|
|
|
|
| 41 |
|
| 42 |
return pred_text
|
| 43 |
|
| 44 |
+
@spaces.GPU
|
| 45 |
+
def transcribe_from_youtube(url):
|
| 46 |
+
# Download audio from YouTube using yt-dlp
|
| 47 |
+
audio_path = "downloaded_audio.wav"
|
| 48 |
+
ydl_opts = {
|
| 49 |
+
'format': 'bestaudio/best',
|
| 50 |
+
'outtmpl': audio_path,
|
| 51 |
+
'postprocessors': [{
|
| 52 |
+
'key': 'FFmpegExtractAudio',
|
| 53 |
+
'preferredcodec': 'wav',
|
| 54 |
+
'preferredquality': '192',
|
| 55 |
+
}],
|
| 56 |
+
'postprocessor_args': ['-ar', '16000'], # Ensure audio is at 16000 Hz
|
| 57 |
+
'prefer_ffmpeg': True,
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 61 |
+
ydl.download([url])
|
| 62 |
+
|
| 63 |
+
# Transcribe the downloaded audio
|
| 64 |
+
return transcribe_speech(audio_path)
|
| 65 |
+
|
| 66 |
+
with gr.Blocks() as demo:
|
| 67 |
+
with gr.Tab("Microphone Input"):
|
| 68 |
+
gr.Markdown("## Transcribe speech from microphone")
|
| 69 |
+
mic_audio = gr.Audio(source="microphone", type="filepath", label="Speak into your microphone")
|
| 70 |
+
transcribe_button = gr.Button("Transcribe")
|
| 71 |
+
transcription_output = gr.Textbox(label="Transcription")
|
| 72 |
+
|
| 73 |
+
transcribe_button.click(fn=transcribe_speech, inputs=mic_audio, outputs=transcription_output)
|
| 74 |
+
|
| 75 |
+
with gr.Tab("YouTube URL"):
|
| 76 |
+
gr.Markdown("## Transcribe speech from YouTube video")
|
| 77 |
+
youtube_url = gr.Textbox(label="Enter YouTube video URL")
|
| 78 |
+
transcribe_button = gr.Button("Transcribe")
|
| 79 |
+
transcription_output = gr.Textbox(label="Transcription")
|
| 80 |
+
|
| 81 |
+
transcribe_button.click(fn=transcribe_from_youtube, inputs=youtube_url, outputs=transcription_output)
|
| 82 |
|
| 83 |
+
demo.launch()
|