File size: 5,132 Bytes
88b5dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
import os
import random
import warnings
from functools import partial

import numpy as np
import torch

try:
    import augment
except ImportError:
    raise ImportError(
        "augment is not installed, please install it first using:"
        "\npip install git+https://github.com/facebookresearch/WavAugment@54afcdb00ccc852c2f030f239f8532c9562b550e"
    )

from .base import Effect

_logger = logging.getLogger(__name__)
_DEBUG = bool(os.environ.get("DEBUG", False))


class AttachableEffect(Effect):
    def attach(self, chain: augment.EffectChain) -> augment.EffectChain:
        raise NotImplementedError

    def apply(self, wav: np.ndarray, sr: int):
        chain = augment.EffectChain()
        chain = self.attach(chain)
        tensor = torch.from_numpy(wav)[None].float()  # (1, T)
        tensor = chain.apply(tensor, src_info={"rate": sr}, target_info={"channels": 1, "rate": sr})
        wav = tensor.numpy()[0]  # (T,)
        return wav


class SoxEffect(AttachableEffect):
    def __init__(self, effect_name: str, *args, **kwargs):
        self.effect_name = effect_name
        self.args = args
        self.kwargs = kwargs

    def attach(self, chain: augment.EffectChain) -> augment.EffectChain:
        _logger.debug(f"Attaching {self.effect_name} with {self.args} and {self.kwargs}")
        if not hasattr(chain, self.effect_name):
            raise ValueError(f"EffectChain has no attribute {self.effect_name}")
        return getattr(chain, self.effect_name)(*self.args, **self.kwargs)


class Maybe(AttachableEffect):
    """
    Attach an effect with a probability.
    """

    def __init__(self, prob: float, effect: AttachableEffect):
        self.prob = prob
        self.effect = effect
        if _DEBUG:
            warnings.warn("DEBUG mode is on. Maybe -> Must.")
            self.prob = 1

    def attach(self, chain: augment.EffectChain) -> augment.EffectChain:
        if random.random() > self.prob:
            return chain
        return self.effect.attach(chain)


class Chain(AttachableEffect):
    """
    Attach a chain of effects.
    """

    def __init__(self, *effects: AttachableEffect):
        self.effects = effects

    def attach(self, chain: augment.EffectChain) -> augment.EffectChain:
        for effect in self.effects:
            chain = effect.attach(chain)
        return chain


class Choice(AttachableEffect):
    """
    Attach one of the effects randomly.
    """

    def __init__(self, *effects: AttachableEffect):
        self.effects = effects

    def attach(self, chain: augment.EffectChain) -> augment.EffectChain:
        return random.choice(self.effects).attach(chain)


class Generator:
    def __call__(self) -> str:
        raise NotImplementedError


class Uniform(Generator):
    def __init__(self, low, high):
        self.low = low
        self.high = high

    def __call__(self) -> str:
        return str(random.uniform(self.low, self.high))


class Randint(Generator):
    def __init__(self, low, high):
        self.low = low
        self.high = high

    def __call__(self) -> str:
        return str(random.randint(self.low, self.high))


class Concat(Generator):
    def __init__(self, *parts: Generator | str):
        self.parts = parts

    def __call__(self):
        return "".join([part if isinstance(part, str) else part() for part in self.parts])


class RandomLowpassDistorter(SoxEffect):
    def __init__(self, low=2000, high=16000):
        super().__init__("sinc", "-n", Randint(50, 200), Concat("-", Uniform(low, high)))


class RandomBandpassDistorter(SoxEffect):
    def __init__(self, low=100, high=1000, min_width=2000, max_width=4000):
        super().__init__("sinc", "-n", Randint(50, 200), partial(self._fn, low, high, min_width, max_width))

    @staticmethod
    def _fn(low, high, min_width, max_width):
        start = random.randint(low, high)
        stop = start + random.randint(min_width, max_width)
        return f"{start}-{stop}"


class RandomEqualizer(SoxEffect):
    def __init__(self, low=100, high=4000, q_low=1, q_high=5, db_low: int = -30, db_high: int = 30):
        super().__init__(
            "equalizer",
            Uniform(low, high),
            lambda: f"{random.randint(q_low, q_high)}q",
            lambda: random.randint(db_low, db_high),
        )


class RandomOverdrive(SoxEffect):
    def __init__(self, gain_low=5, gain_high=40, colour_low=20, colour_high=80):
        super().__init__("overdrive", Uniform(gain_low, gain_high), Uniform(colour_low, colour_high))


class RandomReverb(Chain):
    def __init__(self, deterministic=False):
        super().__init__(
            SoxEffect(
                "reverb",
                Uniform(50, 50) if deterministic else Uniform(0, 100),
                Uniform(50, 50) if deterministic else Uniform(0, 100),
                Uniform(50, 50) if deterministic else Uniform(0, 100),
            ),
            SoxEffect("channels", 1),
        )


class Flanger(SoxEffect):
    def __init__(self):
        super().__init__("flanger")


class Phaser(SoxEffect):
    def __init__(self):
        super().__init__("phaser")