Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,10 @@ import streamlit as st
|
|
| 3 |
from termcolor import colored
|
| 4 |
import torch
|
| 5 |
from transformers import BertTokenizer, BertForMaskedLM, BertForSequenceClassification
|
|
|
|
| 6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
| 7 |
@st.cache
|
| 8 |
def load_models():
|
| 9 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
@@ -11,7 +14,11 @@ def load_models():
|
|
| 11 |
bert_mlm_negative = BertForMaskedLM.from_pretrained('text_style_mlm_negative', return_dict=True).to(device).train(True)
|
| 12 |
bert_classifier = BertForSequenceClassification.from_pretrained('text_style_classifier', num_labels=2).to(device).train(True)
|
| 13 |
return tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier
|
|
|
|
|
|
|
| 14 |
tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier = load_models()
|
|
|
|
|
|
|
| 15 |
def highlight_diff(sent, sent_main):
|
| 16 |
tokens = tokenizer.tokenize(sent)
|
| 17 |
tokens_main = tokenizer.tokenize(sent_main)
|
|
@@ -24,11 +31,14 @@ def highlight_diff(sent, sent_main):
|
|
| 24 |
new_toks.append(tok)
|
| 25 |
|
| 26 |
return ' '.join(new_toks)
|
| 27 |
-
|
|
|
|
| 28 |
def get_classifier_prob(sent):
|
| 29 |
bert_classifier.eval()
|
| 30 |
with torch.no_grad():
|
| 31 |
return bert_classifier(**{k: v.to(device) for k, v in tokenizer(sent, return_tensors='pt').items()}).logits.softmax(dim=-1)[0].cpu().numpy()
|
|
|
|
|
|
|
| 32 |
def beam_get_replacements(current_beam, beam_size, epsilon=1e-3, used_positions=[]):
|
| 33 |
"""
|
| 34 |
- for each sentence in :current_beam: - split the sentence into tokens using the INGSOC-approved BERT tokenizer
|
|
@@ -74,6 +84,8 @@ def beam_get_replacements(current_beam, beam_size, epsilon=1e-3, used_positions=
|
|
| 74 |
else:
|
| 75 |
st.write("No more new hypotheses")
|
| 76 |
return current_beam, None
|
|
|
|
|
|
|
| 77 |
def get_best_hypotheses(sentence, beam_size, max_steps, epsilon=1e-3, pretty_output=False):
|
| 78 |
current_beam = {sentence: get_classifier_prob(sentence)[1]}
|
| 79 |
used_poss = []
|
|
@@ -94,10 +106,14 @@ def get_best_hypotheses(sentence, beam_size, max_steps, epsilon=1e-3, pretty_out
|
|
| 94 |
used_poss.append(used_pos)
|
| 95 |
|
| 96 |
return current_beam, used_poss
|
|
|
|
|
|
|
| 97 |
st.title("Correcting opinions")
|
|
|
|
| 98 |
default_value = "write your review here (in lower case - vocab reasons)"
|
| 99 |
sentence = st.text_area("Text", default_value, height = 275)
|
| 100 |
beam_size = st.sidebar.slider("Beam size", value = 3, min_value = 1, max_value=20, step=1)
|
| 101 |
max_steps = st.sidebar.slider("Max steps", value = 3, min_value = 1, max_value=10, step=1)
|
| 102 |
prettyfy = st.sidebar.slider("Higlight changes", value = 0, min_value = 0, max_value=1, step=1)
|
|
|
|
| 103 |
beam, used_poss = get_best_hypotheses(sentence, beam_size=beam_size, max_steps=max_steps, pretty_output=bool(prettyfy))
|
|
|
|
| 3 |
from termcolor import colored
|
| 4 |
import torch
|
| 5 |
from transformers import BertTokenizer, BertForMaskedLM, BertForSequenceClassification
|
| 6 |
+
|
| 7 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
+
|
| 9 |
+
|
| 10 |
@st.cache
|
| 11 |
def load_models():
|
| 12 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
|
| 14 |
bert_mlm_negative = BertForMaskedLM.from_pretrained('text_style_mlm_negative', return_dict=True).to(device).train(True)
|
| 15 |
bert_classifier = BertForSequenceClassification.from_pretrained('text_style_classifier', num_labels=2).to(device).train(True)
|
| 16 |
return tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier
|
| 17 |
+
|
| 18 |
+
|
| 19 |
tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier = load_models()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
def highlight_diff(sent, sent_main):
|
| 23 |
tokens = tokenizer.tokenize(sent)
|
| 24 |
tokens_main = tokenizer.tokenize(sent_main)
|
|
|
|
| 31 |
new_toks.append(tok)
|
| 32 |
|
| 33 |
return ' '.join(new_toks)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
def get_classifier_prob(sent):
|
| 37 |
bert_classifier.eval()
|
| 38 |
with torch.no_grad():
|
| 39 |
return bert_classifier(**{k: v.to(device) for k, v in tokenizer(sent, return_tensors='pt').items()}).logits.softmax(dim=-1)[0].cpu().numpy()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
def beam_get_replacements(current_beam, beam_size, epsilon=1e-3, used_positions=[]):
|
| 43 |
"""
|
| 44 |
- for each sentence in :current_beam: - split the sentence into tokens using the INGSOC-approved BERT tokenizer
|
|
|
|
| 84 |
else:
|
| 85 |
st.write("No more new hypotheses")
|
| 86 |
return current_beam, None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
def get_best_hypotheses(sentence, beam_size, max_steps, epsilon=1e-3, pretty_output=False):
|
| 90 |
current_beam = {sentence: get_classifier_prob(sentence)[1]}
|
| 91 |
used_poss = []
|
|
|
|
| 106 |
used_poss.append(used_pos)
|
| 107 |
|
| 108 |
return current_beam, used_poss
|
| 109 |
+
|
| 110 |
+
|
| 111 |
st.title("Correcting opinions")
|
| 112 |
+
|
| 113 |
default_value = "write your review here (in lower case - vocab reasons)"
|
| 114 |
sentence = st.text_area("Text", default_value, height = 275)
|
| 115 |
beam_size = st.sidebar.slider("Beam size", value = 3, min_value = 1, max_value=20, step=1)
|
| 116 |
max_steps = st.sidebar.slider("Max steps", value = 3, min_value = 1, max_value=10, step=1)
|
| 117 |
prettyfy = st.sidebar.slider("Higlight changes", value = 0, min_value = 0, max_value=1, step=1)
|
| 118 |
+
|
| 119 |
beam, used_poss = get_best_hypotheses(sentence, beam_size=beam_size, max_steps=max_steps, pretty_output=bool(prettyfy))
|