Spaces:
Runtime error
Runtime error
File size: 19,524 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
import numpy as np
from typing import Dict, List, Tuple
import fvcore.nn.weight_init as weight_init
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, cat, interpolate
from detectron2.modeling import ROI_MASK_HEAD_REGISTRY
from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference, mask_rcnn_loss
from detectron2.structures import Boxes
from .point_features import (
generate_regular_grid_point_coords,
get_point_coords_wrt_image,
get_uncertain_point_coords_on_grid,
get_uncertain_point_coords_with_randomness,
point_sample,
point_sample_fine_grained_features,
sample_point_labels,
)
from .point_head import build_point_head, roi_mask_point_loss
def calculate_uncertainty(logits, classes):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
classes (list): A list of length R that contains either predicted of ground truth class
for eash predicted mask.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
if logits.shape[1] == 1:
gt_class_logits = logits.clone()
else:
gt_class_logits = logits[
torch.arange(logits.shape[0], device=logits.device), classes
].unsqueeze(1)
return -(torch.abs(gt_class_logits))
class ConvFCHead(nn.Module):
"""
A mask head with fully connected layers. Given pooled features it first reduces channels and
spatial dimensions with conv layers and then uses FC layers to predict coarse masks analogously
to the standard box head.
"""
_version = 2
@configurable
def __init__(
self, input_shape: ShapeSpec, *, conv_dim: int, fc_dims: List[int], output_shape: Tuple[int]
):
"""
Args:
conv_dim: the output dimension of the conv layers
fc_dims: a list of N>0 integers representing the output dimensions of N FC layers
output_shape: shape of the output mask prediction
"""
super().__init__()
# fmt: off
input_channels = input_shape.channels
input_h = input_shape.height
input_w = input_shape.width
self.output_shape = output_shape
# fmt: on
self.conv_layers = []
if input_channels > conv_dim:
self.reduce_channel_dim_conv = Conv2d(
input_channels,
conv_dim,
kernel_size=1,
stride=1,
padding=0,
bias=True,
activation=F.relu,
)
self.conv_layers.append(self.reduce_channel_dim_conv)
self.reduce_spatial_dim_conv = Conv2d(
conv_dim, conv_dim, kernel_size=2, stride=2, padding=0, bias=True, activation=F.relu
)
self.conv_layers.append(self.reduce_spatial_dim_conv)
input_dim = conv_dim * input_h * input_w
input_dim //= 4
self.fcs = []
for k, fc_dim in enumerate(fc_dims):
fc = nn.Linear(input_dim, fc_dim)
self.add_module("fc{}".format(k + 1), fc)
self.fcs.append(fc)
input_dim = fc_dim
output_dim = int(np.prod(self.output_shape))
self.prediction = nn.Linear(fc_dims[-1], output_dim)
# use normal distribution initialization for mask prediction layer
nn.init.normal_(self.prediction.weight, std=0.001)
nn.init.constant_(self.prediction.bias, 0)
for layer in self.conv_layers:
weight_init.c2_msra_fill(layer)
for layer in self.fcs:
weight_init.c2_xavier_fill(layer)
@classmethod
def from_config(cls, cfg, input_shape):
output_shape = (
cfg.MODEL.ROI_HEADS.NUM_CLASSES,
cfg.MODEL.ROI_MASK_HEAD.OUTPUT_SIDE_RESOLUTION,
cfg.MODEL.ROI_MASK_HEAD.OUTPUT_SIDE_RESOLUTION,
)
fc_dim = cfg.MODEL.ROI_MASK_HEAD.FC_DIM
num_fc = cfg.MODEL.ROI_MASK_HEAD.NUM_FC
ret = dict(
input_shape=input_shape,
conv_dim=cfg.MODEL.ROI_MASK_HEAD.CONV_DIM,
fc_dims=[fc_dim] * num_fc,
output_shape=output_shape,
)
return ret
def forward(self, x):
N = x.shape[0]
for layer in self.conv_layers:
x = layer(x)
x = torch.flatten(x, start_dim=1)
for layer in self.fcs:
x = F.relu(layer(x))
output_shape = [N] + list(self.output_shape)
return self.prediction(x).view(*output_shape)
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
version = local_metadata.get("version", None)
if version is None or version < 2:
logger = logging.getLogger(__name__)
logger.warning(
"Weight format of PointRend models have changed! "
"Applying automatic conversion now ..."
)
for k in list(state_dict.keys()):
newk = k
if k.startswith(prefix + "coarse_mask_fc"):
newk = k.replace(prefix + "coarse_mask_fc", prefix + "fc")
if newk != k:
state_dict[newk] = state_dict[k]
del state_dict[k]
@ROI_MASK_HEAD_REGISTRY.register()
class PointRendMaskHead(nn.Module):
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__()
self._feature_scales = {k: 1.0 / v.stride for k, v in input_shape.items()}
# point head
self._init_point_head(cfg, input_shape)
# coarse mask head
self.roi_pooler_in_features = cfg.MODEL.ROI_MASK_HEAD.IN_FEATURES
self.roi_pooler_size = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
self._feature_scales = {k: 1.0 / v.stride for k, v in input_shape.items()}
in_channels = np.sum([input_shape[f].channels for f in self.roi_pooler_in_features])
self._init_roi_head(
cfg,
ShapeSpec(
channels=in_channels,
width=self.roi_pooler_size,
height=self.roi_pooler_size,
),
)
def _init_roi_head(self, cfg, input_shape):
self.coarse_head = ConvFCHead(cfg, input_shape)
def _init_point_head(self, cfg, input_shape):
# fmt: off
self.mask_point_on = cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON
if not self.mask_point_on:
return
assert cfg.MODEL.ROI_HEADS.NUM_CLASSES == cfg.MODEL.POINT_HEAD.NUM_CLASSES
self.mask_point_in_features = cfg.MODEL.POINT_HEAD.IN_FEATURES
self.mask_point_train_num_points = cfg.MODEL.POINT_HEAD.TRAIN_NUM_POINTS
self.mask_point_oversample_ratio = cfg.MODEL.POINT_HEAD.OVERSAMPLE_RATIO
self.mask_point_importance_sample_ratio = cfg.MODEL.POINT_HEAD.IMPORTANCE_SAMPLE_RATIO
# next three parameters are use in the adaptive subdivions inference procedure
self.mask_point_subdivision_init_resolution = cfg.MODEL.ROI_MASK_HEAD.OUTPUT_SIDE_RESOLUTION
self.mask_point_subdivision_steps = cfg.MODEL.POINT_HEAD.SUBDIVISION_STEPS
self.mask_point_subdivision_num_points = cfg.MODEL.POINT_HEAD.SUBDIVISION_NUM_POINTS
# fmt: on
in_channels = int(np.sum([input_shape[f].channels for f in self.mask_point_in_features]))
self.point_head = build_point_head(cfg, ShapeSpec(channels=in_channels, width=1, height=1))
# An optimization to skip unused subdivision steps: if after subdivision, all pixels on
# the mask will be selected and recomputed anyway, we should just double our init_resolution
while (
4 * self.mask_point_subdivision_init_resolution**2
<= self.mask_point_subdivision_num_points
):
self.mask_point_subdivision_init_resolution *= 2
self.mask_point_subdivision_steps -= 1
def forward(self, features, instances):
"""
Args:
features (dict[str, Tensor]): a dict of image-level features
instances (list[Instances]): proposals in training; detected
instances in inference
"""
if self.training:
proposal_boxes = [x.proposal_boxes for x in instances]
coarse_mask = self.coarse_head(self._roi_pooler(features, proposal_boxes))
losses = {"loss_mask": mask_rcnn_loss(coarse_mask, instances)}
if not self.mask_point_on:
return losses
point_coords, point_labels = self._sample_train_points(coarse_mask, instances)
point_fine_grained_features = self._point_pooler(features, proposal_boxes, point_coords)
point_logits = self._get_point_logits(
point_fine_grained_features, point_coords, coarse_mask
)
losses["loss_mask_point"] = roi_mask_point_loss(point_logits, instances, point_labels)
return losses
else:
pred_boxes = [x.pred_boxes for x in instances]
coarse_mask = self.coarse_head(self._roi_pooler(features, pred_boxes))
return self._subdivision_inference(features, coarse_mask, instances)
def _roi_pooler(self, features: List[Tensor], boxes: List[Boxes]):
"""
Extract per-box feature. This is similar to RoIAlign(sampling_ratio=1) except:
1. It's implemented by point_sample
2. It pools features across all levels and concat them, while typically
RoIAlign select one level for every box. However in the config we only use
one level (p2) so there is no difference.
Returns:
Tensor of shape (R, C, pooler_size, pooler_size) where R is the total number of boxes
"""
features_list = [features[k] for k in self.roi_pooler_in_features]
features_scales = [self._feature_scales[k] for k in self.roi_pooler_in_features]
num_boxes = sum(x.tensor.size(0) for x in boxes)
output_size = self.roi_pooler_size
point_coords = generate_regular_grid_point_coords(num_boxes, output_size, boxes[0].device)
# For regular grids of points, this function is equivalent to `len(features_list)' calls
# of `ROIAlign` (with `SAMPLING_RATIO=1`), and concat the results.
roi_features, _ = point_sample_fine_grained_features(
features_list, features_scales, boxes, point_coords
)
return roi_features.view(num_boxes, roi_features.shape[1], output_size, output_size)
def _sample_train_points(self, coarse_mask, instances):
assert self.training
gt_classes = cat([x.gt_classes for x in instances])
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
coarse_mask,
lambda logits: calculate_uncertainty(logits, gt_classes),
self.mask_point_train_num_points,
self.mask_point_oversample_ratio,
self.mask_point_importance_sample_ratio,
)
# sample point_labels
proposal_boxes = [x.proposal_boxes for x in instances]
cat_boxes = Boxes.cat(proposal_boxes)
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords)
point_labels = sample_point_labels(instances, point_coords_wrt_image)
return point_coords, point_labels
def _point_pooler(self, features, proposal_boxes, point_coords):
point_features_list = [features[k] for k in self.mask_point_in_features]
point_features_scales = [self._feature_scales[k] for k in self.mask_point_in_features]
# sample image-level features
point_fine_grained_features, _ = point_sample_fine_grained_features(
point_features_list, point_features_scales, proposal_boxes, point_coords
)
return point_fine_grained_features
def _get_point_logits(self, point_fine_grained_features, point_coords, coarse_mask):
coarse_features = point_sample(coarse_mask, point_coords, align_corners=False)
point_logits = self.point_head(point_fine_grained_features, coarse_features)
return point_logits
def _subdivision_inference(self, features, mask_representations, instances):
assert not self.training
pred_boxes = [x.pred_boxes for x in instances]
pred_classes = cat([x.pred_classes for x in instances])
mask_logits = None
# +1 here to include an initial step to generate the coarsest mask
# prediction with init_resolution, when mask_logits is None.
# We compute initial mask by sampling on a regular grid. coarse_mask
# can be used as initial mask as well, but it's typically very low-res
# so it will be completely overwritten during subdivision anyway.
for _ in range(self.mask_point_subdivision_steps + 1):
if mask_logits is None:
point_coords = generate_regular_grid_point_coords(
pred_classes.size(0),
self.mask_point_subdivision_init_resolution,
pred_boxes[0].device,
)
else:
mask_logits = interpolate(
mask_logits, scale_factor=2, mode="bilinear", align_corners=False
)
uncertainty_map = calculate_uncertainty(mask_logits, pred_classes)
point_indices, point_coords = get_uncertain_point_coords_on_grid(
uncertainty_map, self.mask_point_subdivision_num_points
)
# Run the point head for every point in point_coords
fine_grained_features = self._point_pooler(features, pred_boxes, point_coords)
point_logits = self._get_point_logits(
fine_grained_features, point_coords, mask_representations
)
if mask_logits is None:
# Create initial mask_logits using point_logits on this regular grid
R, C, _ = point_logits.shape
mask_logits = point_logits.reshape(
R,
C,
self.mask_point_subdivision_init_resolution,
self.mask_point_subdivision_init_resolution,
)
# The subdivision code will fail with the empty list of boxes
if len(pred_classes) == 0:
mask_rcnn_inference(mask_logits, instances)
return instances
else:
# Put point predictions to the right places on the upsampled grid.
R, C, H, W = mask_logits.shape
point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
mask_logits = (
mask_logits.reshape(R, C, H * W)
.scatter_(2, point_indices, point_logits)
.view(R, C, H, W)
)
mask_rcnn_inference(mask_logits, instances)
return instances
@ROI_MASK_HEAD_REGISTRY.register()
class ImplicitPointRendMaskHead(PointRendMaskHead):
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__(cfg, input_shape)
def _init_roi_head(self, cfg, input_shape):
assert hasattr(self, "num_params"), "Please initialize point_head first!"
self.parameter_head = ConvFCHead(cfg, input_shape, output_shape=(self.num_params,))
self.regularizer = cfg.MODEL.IMPLICIT_POINTREND.PARAMS_L2_REGULARIZER
def _init_point_head(self, cfg, input_shape):
# fmt: off
self.mask_point_on = True # always on
assert cfg.MODEL.ROI_HEADS.NUM_CLASSES == cfg.MODEL.POINT_HEAD.NUM_CLASSES
self.mask_point_in_features = cfg.MODEL.POINT_HEAD.IN_FEATURES
self.mask_point_train_num_points = cfg.MODEL.POINT_HEAD.TRAIN_NUM_POINTS
# next two parameters are use in the adaptive subdivions inference procedure
self.mask_point_subdivision_steps = cfg.MODEL.POINT_HEAD.SUBDIVISION_STEPS
self.mask_point_subdivision_num_points = cfg.MODEL.POINT_HEAD.SUBDIVISION_NUM_POINTS
# fmt: on
in_channels = int(np.sum([input_shape[f].channels for f in self.mask_point_in_features]))
self.point_head = build_point_head(cfg, ShapeSpec(channels=in_channels, width=1, height=1))
self.num_params = self.point_head.num_params
# inference parameters
self.mask_point_subdivision_init_resolution = int(
math.sqrt(self.mask_point_subdivision_num_points)
)
assert (
self.mask_point_subdivision_init_resolution
* self.mask_point_subdivision_init_resolution
== self.mask_point_subdivision_num_points
)
def forward(self, features, instances):
"""
Args:
features (dict[str, Tensor]): a dict of image-level features
instances (list[Instances]): proposals in training; detected
instances in inference
"""
if self.training:
proposal_boxes = [x.proposal_boxes for x in instances]
parameters = self.parameter_head(self._roi_pooler(features, proposal_boxes))
losses = {"loss_l2": self.regularizer * (parameters**2).mean()}
point_coords, point_labels = self._uniform_sample_train_points(instances)
point_fine_grained_features = self._point_pooler(features, proposal_boxes, point_coords)
point_logits = self._get_point_logits(
point_fine_grained_features, point_coords, parameters
)
losses["loss_mask_point"] = roi_mask_point_loss(point_logits, instances, point_labels)
return losses
else:
pred_boxes = [x.pred_boxes for x in instances]
parameters = self.parameter_head(self._roi_pooler(features, pred_boxes))
return self._subdivision_inference(features, parameters, instances)
def _uniform_sample_train_points(self, instances):
assert self.training
proposal_boxes = [x.proposal_boxes for x in instances]
cat_boxes = Boxes.cat(proposal_boxes)
# uniform sample
point_coords = torch.rand(
len(cat_boxes), self.mask_point_train_num_points, 2, device=cat_boxes.tensor.device
)
# sample point_labels
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords)
point_labels = sample_point_labels(instances, point_coords_wrt_image)
return point_coords, point_labels
def _get_point_logits(self, fine_grained_features, point_coords, parameters):
return self.point_head(fine_grained_features, point_coords, parameters)
|