File size: 1,843 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from omegaconf import OmegaConf

import detectron2.data.transforms as T
from detectron2.config import LazyCall as L
from detectron2.data import (
    DatasetMapper,
    build_detection_test_loader,
    build_detection_train_loader,
    get_detection_dataset_dicts,
)
from detectron2.evaluation import COCOEvaluator

dataloader = OmegaConf.create()

dataloader.train = L(build_detection_train_loader)(
    dataset=L(get_detection_dataset_dicts)(names="coco_2017_train"),
    mapper=L(DatasetMapper)(
        is_train=True,
        augmentations=[
            L(T.RandomApply)(
                tfm_or_aug=L(T.AugmentationList)(
                    augs=[
                        L(T.ResizeShortestEdge)(
                            short_edge_length=[400, 500, 600], sample_style="choice"
                        ),
                        L(T.RandomCrop)(crop_type="absolute_range", crop_size=(384, 600)),
                    ]
                ),
                prob=0.5,
            ),
            L(T.ResizeShortestEdge)(
                short_edge_length=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800),
                sample_style="choice",
                max_size=1333,
            ),
            L(T.RandomFlip)(horizontal=True),
        ],
        image_format="RGB",
        use_instance_mask=True,
    ),
    total_batch_size=16,
    num_workers=4,
)

dataloader.test = L(build_detection_test_loader)(
    dataset=L(get_detection_dataset_dicts)(names="coco_2017_val", filter_empty=False),
    mapper=L(DatasetMapper)(
        is_train=False,
        augmentations=[
            L(T.ResizeShortestEdge)(short_edge_length=800, max_size=1333),
        ],
        image_format="${...train.mapper.image_format}",
    ),
    num_workers=4,
)

dataloader.evaluator = L(COCOEvaluator)(
    dataset_name="${..test.dataset.names}",
)