Spaces:
Runtime error
Runtime error
File size: 3,053 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# DensePose CSE and DensePose Evolution
* [DensePose Evolution pipeline](DENSEPOSE_IUV.md#ModelZooBootstrap), a framework to bootstrap
DensePose on unlabeled data
* [`InferenceBasedLoader`](../densepose/data/inference_based_loader.py)
with data samplers to use inference results from one model
to train another model (bootstrap);
* [`VideoKeyframeDataset`](../densepose/data/video/video_keyframe_dataset.py)
to efficiently load images from video keyframes;
* Category maps and filters to combine annotations from different categories
and train in a class-agnostic manner;
* [Pretrained models](DENSEPOSE_IUV.md#ModelZooBootstrap) for DensePose estimation on chimpanzees;
* DensePose head training from partial data (segmentation only);
* [DensePose models with mask confidence estimation](DENSEPOSE_IUV.md#ModelZooMaskConfidence);
* [DensePose Chimps]() dataset for IUV evaluation
* [DensePose Continuous Surface Embeddings](DENSEPOSE_CSE.md), a framework to extend DensePose
to various categories using 3D models
* [Hard embedding](../densepose/modeling/losses/embed.py) and
[soft embedding](../densepose/modeling/losses/soft_embed.py)
losses to train universal positional embeddings;
* [Embedder](../(densepose/modeling/cse/embedder.py) to handle
mesh vertex embeddings;
* [Storage](../densepose/evaluation/tensor_storage.py) for evaluation with high volumes of data;
* [Pretrained models](DENSEPOSE_CSE.md#ModelZoo) for DensePose CSE estimation on humans and animals;
* [DensePose Chimps](DENSEPOSE_DATASETS.md#densepose-chimps) and
[DensePose LVIS](DENSEPOSE_DATASETS.md#densepose-lvis) datasets for CSE finetuning and evaluation;
* [Vertex and texture mapping visualizers](../densepose/vis/densepose_outputs_vertex.py);
* Refactoring of all major components: losses, predictors, model outputs, model results, visualizers;
* Dedicated structures for [chart outputs](../densepose/structures/chart.py),
[chart outputs with confidences](../densepose/structures/chart_confidence.py),
[chart results](../densepose/structures/chart_result.py),
[CSE outputs](../densepose/structures/cse.py);
* Dedicated predictors for
[chart-based estimation](../densepose/modeling/predictors/chart.py),
[confidence estimation](../densepose/modeling/predictors/chart_confidence.py)
and [CSE estimation](../densepose/modeling/predictors/cse.py);
* Generic handling of various [conversions](../densepose/converters) (e.g. from outputs to results);
* Better organization of various [losses](../densepose/modeling/losses);
* Segregation of loss data accumulators for
[IUV setting](../densepose/modeling/losses/utils.py)
and [CSE setting](../densepose/modeling/losses/embed_utils.py);
* Splitting visualizers into separate modules;
* [HRNet](../densepose/modeling/hrnet.py) and [HRFPN](../densepose/modeling/hrfpn.py) backbones;
* [PoseTrack](DENSEPOSE_DATASETS.md#densepose-posetrack) dataset;
* [IUV texture visualizer](../densepose/vis/densepose_results_textures.py)
|