File size: 16,465 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Continuous Surface Embeddings for Dense Pose Estimation for Humans and Animals

## <a name="Overview"></a> Overview

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/densepose_cse_teaser.png" width="700px" />
</div>

The pipeline uses [Faster R-CNN](https://arxiv.org/abs/1506.01497)
with [Feature Pyramid Network](https://arxiv.org/abs/1612.03144) meta architecture
outlined in Figure 1. For each detected object, the model predicts
its coarse segmentation `S` (2 channels: foreground / background)
and the embedding `E` (16 channels). At the same time, the embedder produces vertex
embeddings `Ê` for the corresponding mesh. Universal positional embeddings `E`
and vertex embeddings `Ê` are matched to derive for each pixel its continuous
surface embedding.

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/densepose_pipeline_cse.png" width="700px" />
</div>
<p class="image-caption"><b>Figure 1.</b> DensePose continuous surface embeddings architecture based on Faster R-CNN with Feature Pyramid Network (FPN).</p>

### Datasets

For more details on datasets used for training and validation of
continuous surface embeddings models,
please refer to the [DensePose Datasets](DENSEPOSE_DATASETS.md) page.

## <a name="ModelZoo"></a> Model Zoo and Baselines

### Human CSE Models

Continuous surface embeddings models for humans trained using the protocols from [Neverova et al, 2020](https://arxiv.org/abs/2011.12438).

Models trained with hard assignment loss &#x2112;:

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml">R_50_FPN_s1x</a></td>
 <td align="center">s1x</td>
 <td align="center">0.349</td>
 <td align="center">0.060</td>
 <td align="center">6.3</td>
 <td align="center">61.1</td>
 <td align="center">67.1</td>
 <td align="center">64.4</td>
 <td align="center">65.7</td>
 <td align="center">251155172</td>
 <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/model_final_c4ea5f.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml">R_101_FPN_s1x</a></td>
  <td align="center">s1x</td>
  <td align="center">0.461</td>
  <td align="center">0.071</td>
  <td align="center">7.4</td>
  <td align="center">62.3</td>
  <td align="center">67.2</td>
  <td align="center">64.7</td>
  <td align="center">65.8</td>
  <td align="center">251155500</td>
  <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_s1x/251155500/model_final_5c995f.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_s1x/251155500/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_s1x -->
 <tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml">R_50_FPN_DL_s1x</a></td>
 <td align="center">s1x</td>
 <td align="center">0.399</td>
 <td align="center">0.061</td>
 <td align="center">7.0</td>
 <td align="center">60.8</td>
 <td align="center">67.8</td>
 <td align="center">65.5</td>
 <td align="center">66.4</td>
 <td align="center">251156349</td>
 <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_DL_s1x/251156349/model_final_e96218.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_DL_s1x/251156349/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml">R_101_FPN_DL_s1x</a></td>
  <td align="center">s1x</td>
  <td align="center">0.504</td>
  <td align="center">0.074</td>
  <td align="center">8.3</td>
  <td align="center">61.5</td>
  <td align="center">68.0</td>
  <td align="center">65.6</td>
  <td align="center">66.6</td>
  <td align="center">251156606</td>
  <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_s1x/251156606/model_final_b236ce.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_s1x/251156606/metrics.json">metrics</a></td>
</tr>
</tbody></table>

Models trained with soft assignment loss &#x2112;<sub>&sigma;</sub>:

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_soft_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml">R_50_FPN_soft_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.357</td>
<td align="center">0.057</td>
<td align="center">9.7</td>
<td align="center">61.3</td>
<td align="center">66.9</td>
<td align="center">64.3</td>
<td align="center">65.4</td>
<td align="center">250533982</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_soft_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml">R_101_FPN_soft_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.464</td>
<td align="center">0.071</td>
<td align="center">10.5</td>
<td align="center">62.1</td>
<td align="center">67.3</td>
<td align="center">64.5</td>
<td align="center">66.0</td>
<td align="center">250712522</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_soft_s1x/250712522/model_final_4637da.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_soft_s1x/250712522/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_soft_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml">R_50_FPN_DL_soft_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.427</td>
<td align="center">0.062</td>
<td align="center">11.3</td>
<td align="center">60.8</td>
<td align="center">68.0</td>
<td align="center">66.1</td>
<td align="center">66.7</td>
<td align="center">250713703</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x/250713703/model_final_9199f5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x/250713703/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_soft_s1x -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml">R_101_FPN_DL_soft_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.483</td>
<td align="center">0.071</td>
<td align="center">12.2</td>
<td align="center">61.5</td>
<td align="center">68.2</td>
<td align="center">66.2</td>
<td align="center">67.1</td>
<td align="center">250713061</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x/250713061/model_final_1d3314.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x/250713061/metrics.json">metrics</a></td>
</tr>
</tbody></table>

### Animal CSE Models

Models obtained by finetuning human CSE models on animals data from `ds1_train`
(see the [DensePose LVIS](DENSEPOSE_DATASETS.md#continuous-surface-embeddings-annotations-3)
section for more details on the datasets) with soft assignment loss &#x2112;<sub>&sigma;</sub>:

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k -->
 <tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml">R_50_FPN_soft_chimps_finetune_4k</a></td>
<td align="center">4K</td>
<td align="center">0.569</td>
<td align="center">0.051</td>
<td align="center">4.7</td>
<td align="center">62.0</td>
<td align="center">59.0</td>
<td align="center">32.2</td>
<td align="center">39.6</td>
<td align="center">253146869</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k/253146869/model_final_52f649.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k/253146869/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_soft_animals_finetune_4k -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml">R_50_FPN_soft_animals_finetune_4k</a></td>
<td align="center">4K</td>
<td align="center">0.381</td>
<td align="center">0.061</td>
<td align="center">7.3</td>
<td align="center">44.9</td>
<td align="center">55.5</td>
<td align="center">21.3</td>
<td align="center">28.8</td>
<td align="center">253145793</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k/253145793/model_final_8f8ba2.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k/253145793/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k -->
 <tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml">R_50_FPN_soft_animals_CA_finetune_4k</a></td>
<td align="center">4K</td>
<td align="center">0.412</td>
<td align="center">0.059</td>
<td align="center">7.1</td>
<td align="center">53.4</td>
<td align="center">59.5</td>
<td align="center">25.4</td>
<td align="center">33.4</td>
<td align="center">253498611</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k/253498611/model_final_6d69b7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k/253498611/metrics.json">metrics</a></td>
</tr>
</tbody></table>

Acronyms:

`CA`: class agnostic training, where all annotated instances are mapped into a single category


Models obtained by finetuning human CSE models on animals data from `ds2_train` dataset
with soft assignment loss &#x2112;<sub>&sigma;</sub> and, for some schedules, cycle losses.
Please refer to [DensePose LVIS](DENSEPOSE_DATASETS.md#continuous-surface-embeddings-annotations-3)
section for details on the dataset and to [Neverova et al, 2021]() for details on cycle losses.

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">GErr</th>
<th valign="bottom">GPS</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml">R_50_FPN_soft_animals_I0_finetune_16k</a></td>
 <td align="center">16k</td>
 <td align="center">0.386</td>
 <td align="center">0.058</td>
 <td align="center">8.4</td>
 <td align="center">54.2</td>
 <td align="center">67.0</td>
 <td align="center">29.0</td>
 <td align="center">38.6</td>
 <td align="center">13.2</td>
 <td align="center">85.4</td>
 <td align="center">270727112</td>
 <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k/270727112/model_final_421d28.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k/270727112/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml">R_50_FPN_soft_animals_I0_finetune_m2m_16k</a></td>
 <td align="center">16k</td>
 <td align="center">0.508</td>
 <td align="center">0.056</td>
 <td align="center">12.2</td>
 <td align="center">54.1</td>
 <td align="center">67.3</td>
 <td align="center">28.6</td>
 <td align="center">38.4</td>
 <td align="center">12.5</td>
 <td align="center">87.6</td>
 <td align="center">270982215</td>
 <td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k/270982215/model_final_6fe5f4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k/270982215/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k -->
<tr><td align="left"><a href="../configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml">R_50_FPN_soft_animals_I0_finetune_i2m_16k</a></td>
 <td align="center">16k</td>
 <td align="center">0.483</td>
 <td align="center">0.056</td>
 <td align="center">9.7</td>
 <td align="center">54.0</td>
 <td align="center">66.6</td>
 <td align="center">28.9</td>
 <td align="center">38.3</td>
 <td align="center">11.0</td>
 <td align="center">88.9</td>
 <td align="center">270727461</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k/270727461/model_final_8c9d99.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k/270727461/metrics.json">metrics</a></td>
</tr>
</tbody></table>

## <a name="References"></a> References

If you use DensePose methods based on continuous surface embeddings, please take the
references from the following BibTeX entries:

Continuous surface embeddings:
```
@InProceedings{Neverova2020ContinuousSurfaceEmbeddings,
    title = {Continuous Surface Embeddings},
    author = {Neverova, Natalia and Novotny, David and Khalidov, Vasil and Szafraniec, Marc and Labatut, Patrick and Vedaldi, Andrea},
    journal = {Advances in Neural Information Processing Systems},
    year = {2020},
}
```

Cycle Losses:
```
@InProceedings{Neverova2021UniversalCanonicalMaps,
    title = {Discovering Relationships between Object Categories via Universal Canonical Maps},
    author = {Neverova, Natalia and Sanakoyeu, Artsiom and Novotny, David and Labatut, Patrick and Vedaldi, Andrea},
    journal = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}
```