import os import streamlit as st from embedchain import App os.environ["HF_HOME"] = "./models" #! PROVIDE HUGGINGFACE TOKEN IF RUNNING OFFLINE @st.cache_resource def conversational_ai(): return App.from_config(config_path="./config_main.yaml") st.title('Demo of "AI Chatbot in Law"') st.caption( "🚀 A demo of conversation AI for Dhirubhai Ambani Centre for Technology and Law (DA-CTL) made by **Anurag Shukla**, **Tanaz Pathan** under guidance of **Prof. Prasenjit Majumder**" ) if "messages" not in st.session_state: st.session_state.messages = [ { "role": "assistant", "content": """ Hi! I'm a conversational AI specializing in Indian Legal System. How may I assist you today? """, } ] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Disclaimer: I am still a product in developement"): app = conversational_ai() # if prompt.startswith("/add"): # with st.chat_message("user"): # st.markdown(prompt) # st.session_state.messages.append({"role": "user", "content": prompt}) # prompt = prompt.replace("/add", "").strip() # with st.chat_message("assistant"): # message_placeholder = st.empty() # message_placeholder.markdown("Adding to knowledge base...") # app.add(prompt) # message_placeholder.markdown(f"Added {prompt} to knowledge base!") # st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"}) # st.stop() with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): msg_placeholder = st.empty() msg_placeholder.markdown("Thinking...") print("Querying the Agent.") cntxt = app.search(prompt) print(*cntxt, sep="\n--\n") full_response = app.llm.query( input_query=prompt, contexts=[i["context"] for i in cntxt], ) # print(f"##FULL:\n\n{full_response}") full_response = full_response.rpartition("Answer:")[-1].strip() print(f"#ANSWER\n\n{full_response}") msg_placeholder.markdown(full_response) st.session_state.messages.append( {"role": "assistant", "content": full_response} )