Spaces:
Sleeping
Sleeping
File size: 2,061 Bytes
c23507d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import streamlit as st
from embedchain import App
os.environ["HF_HOME"] = "models"
@st.cache_resource
def embedchain_bot():
return App.from_config(config_path="./config_main.yaml")
st.title("π¬ Chatbot")
st.caption("π An Embedchain app created by Anurag Shukla (IRLP Lab) for DA-IICT!")
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role": "assistant",
"content": """
Hi! I'm a chatbot. I can answer questions and learn new things!\n
""",
}
]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me anything!"):
app = embedchain_bot()
# if prompt.startswith("/add"):
# with st.chat_message("user"):
# st.markdown(prompt)
# st.session_state.messages.append({"role": "user", "content": prompt})
# prompt = prompt.replace("/add", "").strip()
# with st.chat_message("assistant"):
# message_placeholder = st.empty()
# message_placeholder.markdown("Adding to knowledge base...")
# app.add(prompt)
# message_placeholder.markdown(f"Added {prompt} to knowledge base!")
# st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"})
# st.stop()
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
msg_placeholder = st.empty()
msg_placeholder.markdown("Thinking...")
print("Querying the Agent.")
full_response = app.query(prompt.lower())
full_response = full_response.rpartition("Answer:")[-1].strip()
print(f"Answer:\n\n{full_response}")
msg_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
|