chat-bctp / app.py
anubhav-singh's picture
Update app.py
464350c verified
raw
history blame
1.77 kB
import torch
from transformers import AutoModel,AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import gradio as gr
from threading import Thread
model = AutoModelForCausalLM.from_pretrained(
"DuckyBlender/racist-phi3",
torch_dtype=torch.float16,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("DuckyBlender/racist-phi3")
device = torch.device("cpu")
model = model.to(device)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [29, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def predict(message, history):
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
for item in history_transformer_format])
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512,
do_sample=True,
top_p=0.90,
top_k=1000,
temperature=0.9,
num_beams=1,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
gr.ChatInterface(predict,theme='HaleyCH/HaleyCH_Theme').launch()