Spaces:
Build error
Build error
import base64 | |
import re | |
import time | |
from dataclasses import dataclass | |
from functools import partial | |
from io import BytesIO | |
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from transformers import CLIPImageProcessor, CLIPVisionModel | |
from modules import shared | |
from modules.extensions import apply_extensions | |
from modules.text_generation import encode, get_max_prompt_length | |
params = { | |
"add_all_images_to_prompt": False, | |
# device to run CLIP on | |
"clip_device": None, | |
# bits to load clip in either 32 or 16 (it doesn't support 8-bit) | |
"clip_bits": 32, | |
# clip repository | |
"clip_repo": "openai/clip-vit-large-patch14", | |
# device to run projector on | |
"projector_device": None, | |
# projector bits, either 32 or 16 | |
"projector_bits": 32, | |
# projector repository | |
"projector_repo": "liuhaotian/LLaVA-13b-delta-v0", | |
# file with the projector weights | |
"projector_file": "mm_projector.bin" | |
} | |
# If 'state' is True, will hijack the next chat generation | |
input_hijack = { | |
'state': False, | |
'value': ["", ""] | |
} | |
# initialized in ui, so that params are loaded from settings | |
llava_embedder = None | |
class Token: | |
token: str | |
id: int | |
class LLaVAEmbedder: | |
IM_PATCH = Token("<im_patch>", 32000) | |
IM_START = Token("<im_start>", 32001) | |
IM_END = Token("<im_end>", 32002) | |
def __init__(self): | |
self.clip_device = self._get_device("clip_device") | |
self.clip_dtype = self._get_dtype("clip_bits") | |
self.projector_device = self._get_device("projector_device") | |
self.projector_dtype = self._get_dtype("projector_bits") | |
self.image_processor, self.vision_tower, self.mm_projector = self._load_models() | |
def _get_device(self, setting_name): | |
if params[setting_name] is None: | |
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
return torch.device(params[setting_name]) | |
def _get_dtype(self, setting_name): | |
return torch.float32 if int(params[setting_name]) == 32 else torch.float16 | |
def _load_models(self): | |
start_ts = time.time() | |
print(f"LLaVA - Loading CLIP from {params['clip_repo']} as {self.clip_dtype} on {self.clip_device}...") | |
image_processor = CLIPImageProcessor.from_pretrained(params["clip_repo"], torch_dtype=self.clip_dtype) | |
vision_tower = CLIPVisionModel.from_pretrained(params["clip_repo"], torch_dtype=self.clip_dtype).to(self.clip_device) | |
print(f"LLaVA - Loading projector from {params['projector_repo']} as {self.projector_dtype} on {self.projector_device}...") | |
projector_path = hf_hub_download(params["projector_repo"], params["projector_file"]) | |
mm_projector = torch.nn.Linear(1024, 5120) | |
projector_data = torch.load(projector_path) | |
mm_projector.weight = torch.nn.Parameter(projector_data['model.mm_projector.weight'].to(dtype=self.projector_dtype), False) | |
mm_projector.bias = torch.nn.Parameter(projector_data['model.mm_projector.bias'].to(dtype=self.projector_dtype), False) | |
mm_projector = mm_projector.to(self.projector_device) | |
print(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds") | |
return image_processor, vision_tower, mm_projector | |
def _update_prompt(self, prompt, images): | |
for _ in images: | |
# replace the image token with the image patch token in the prompt (each occurrence) | |
replace_token = LLaVAEmbedder.IM_PATCH.token * 256 | |
replace_token = LLaVAEmbedder.IM_START.token + replace_token + LLaVAEmbedder.IM_END.token | |
prompt = re.sub(r'<img src="data:image/jpeg;base64,([A-Za-z0-9+/=]+)">', replace_token, prompt, 1) | |
return prompt | |
def _extract_image_features(self, images): | |
images = self.image_processor(images, return_tensors='pt')['pixel_values'] | |
images = images.to(self.clip_device, dtype=self.clip_dtype) | |
with torch.no_grad(): | |
image_forward_outs = self.vision_tower(images, output_hidden_states=True) | |
select_hidden_state_layer = -2 | |
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] | |
image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype) | |
image_features = self.mm_projector(image_features) | |
return image_features | |
def forward(self, prompt, images, state): | |
prompt = self._update_prompt(prompt, images) | |
input_ids = encode(prompt, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))[0] | |
input_embeds = shared.model.model.embed_tokens(input_ids).to(self.projector_device) | |
if input_ids[0] == LLaVAEmbedder.IM_PATCH.id: | |
# prompt got truncated in the middle of an image, remove the image data | |
im_end = torch.where(input_ids == LLaVAEmbedder.IM_END.id)[0][0] | |
input_ids = input_ids[im_end+1:] | |
input_embeds = input_embeds[im_end+1:] | |
leftover_images = torch.where(input_ids == LLaVAEmbedder.IM_START.id)[0].shape[0] | |
print(f"LLaVA - WARNING: removed {len(images) - leftover_images} image(s) from prompt. The generation might be broken, try decreasing max_new_tokens") | |
images = images[-leftover_images:] | |
if len(images) == 0: | |
return prompt, input_ids, input_embeds, 0 | |
total_embedded = 0 | |
image_features = self._extract_image_features(images).to(self.projector_device) | |
image_start_tokens = torch.where(input_ids == LLaVAEmbedder.IM_START.id)[0] | |
if not torch.any(input_ids == LLaVAEmbedder.IM_PATCH.id) or len(image_start_tokens) == 0: | |
# multimodal LLM, but the current prompt is not multimodal/truncated | |
return prompt, input_ids, input_embeds, total_embedded | |
cur_image_idx = 0 | |
if not params['add_all_images_to_prompt']: | |
image_start_tokens = [image_start_tokens[-1]] | |
cur_image_idx = -1 | |
for image_start_token_pos in image_start_tokens: | |
cur_image_features = image_features[cur_image_idx] | |
num_patches = cur_image_features.shape[0] | |
input_embeds = torch.cat((input_embeds[:image_start_token_pos+1], cur_image_features, input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) | |
cur_image_idx += 1 | |
total_embedded += 1 | |
return prompt, input_ids, input_embeds, total_embedded | |
def len_in_tokens(text): | |
images = re.findall(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', text) | |
image_tokens = 0 | |
for _ in images: | |
image_tokens += 258 | |
return len(encode(re.sub(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', '', text))[0]) + image_tokens | |
def add_chat_picture(picture, text, visible_text): | |
# resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable) | |
max_hw, min_hw = max(picture.size), min(picture.size) | |
aspect_ratio = max_hw / min_hw | |
shortest_edge = int(max(300 / aspect_ratio, 224)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
w = shortest_edge if picture.width < picture.height else longest_edge | |
h = shortest_edge if picture.width >= picture.height else longest_edge | |
picture = picture.resize((w,h)) | |
buffer = BytesIO() | |
picture.save(buffer, format="JPEG") | |
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
image = f'<img src="data:image/jpeg;base64,{img_str}">' | |
if '<image>' in text: | |
text = text.replace('<image>', image) | |
else: | |
text = text + '\n' + image | |
if visible_text == '' or visible_text is None: | |
visible_text = text | |
elif '<image>' in visible_text: | |
visible_text = visible_text.replace('<image>', image) | |
else: | |
visible_text = visible_text + '\n' + image | |
return text, visible_text | |
def custom_generate_chat_prompt(user_input, state, **kwargs): | |
impersonate = kwargs['impersonate'] if 'impersonate' in kwargs else False | |
_continue = kwargs['_continue'] if '_continue' in kwargs else False | |
also_return_rows = kwargs['also_return_rows'] if 'also_return_rows' in kwargs else False | |
rows = [f"{state['context'].strip()}\n"] | |
min_rows = 3 | |
# Finding the maximum prompt size | |
chat_prompt_size = state['chat_prompt_size'] | |
if shared.soft_prompt: | |
chat_prompt_size -= shared.soft_prompt_tensor.shape[1] | |
max_length = min(get_max_prompt_length(state), chat_prompt_size) | |
prefix1 = f"{state['name1']}: " | |
prefix2 = f"{state['name2']}: " | |
i = len(shared.history['internal']) - 1 | |
while i >= 0 and LLaVAEmbedder.len_in_tokens(''.join(rows)) < max_length: | |
if _continue and i == len(shared.history['internal']) - 1: | |
rows.insert(1, f"{prefix2}{shared.history['internal'][i][1]}") | |
else: | |
rows.insert(1, f"{prefix2}{shared.history['internal'][i][1].strip()}\n") | |
string = shared.history['internal'][i][0] | |
if string != '': | |
rows.insert(1, f"{prefix1}{string.strip()}\n") | |
i -= 1 | |
if impersonate: | |
min_rows = 2 | |
rows.append(f"{prefix1}") | |
elif not _continue: | |
# Adding the user message | |
if len(user_input) > 0: | |
rows.append(f"{prefix1}{user_input}\n") | |
# Adding the Character prefix | |
rows.append(apply_extensions("bot_prefix", f"{prefix2}")) | |
while len(rows) > min_rows and LLaVAEmbedder.len_in_tokens(''.join(rows)) >= max_length: | |
rows.pop(1) | |
prompt = ''.join(rows) | |
if also_return_rows: | |
return prompt, rows | |
else: | |
return prompt | |
def tokenizer_modifier(state, prompt, input_ids, input_embeds): | |
global params | |
start_ts = time.time() | |
image_matches = re.finditer(r'<img src="data:image/jpeg;base64,([A-Za-z0-9+/=]+)">', prompt) | |
images = [Image.open(BytesIO(base64.b64decode(match.group(1)))) for match in image_matches] | |
if len(images) == 0: | |
return prompt, input_ids, input_embeds | |
prompt, input_ids, input_embeds, total_embedded = llava_embedder.forward(prompt, images, state) | |
print(f'LLaVA - Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s') | |
return (prompt, | |
input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64), | |
input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype)) | |
def ui(): | |
global llava_embedder | |
llava_embedder = LLaVAEmbedder() | |
with gr.Column(): | |
picture_select = gr.Image(label='Send a picture', type='pil') | |
# I found that it doesn't deal super well with multiple images, and demo ui had a bug where it included only the last image anyway | |
single_image_checkbox = gr.Checkbox(False, label='Embed all images, not only the last one') | |
# Prepare the input hijack | |
picture_select.upload( | |
lambda picture: input_hijack.update({"state": True, "value": partial(add_chat_picture, picture)}), | |
[picture_select], | |
None | |
) | |
picture_select.clear(lambda: input_hijack.update({"state": False, "value": ["",""]}), None, None) | |
single_image_checkbox.change(lambda x: params.update({"add_all_images_to_prompt": x}), single_image_checkbox, None) | |
shared.gradio['Generate'].click(lambda: None, None, picture_select) | |
shared.gradio['textbox'].submit(lambda: None, None, picture_select) | |