Spaces:
Build error
Build error
File size: 22,203 Bytes
292c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import json
import os
import time
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from threading import Thread
from modules import shared
from modules.text_generation import encode, generate_reply
params = {
'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001,
}
debug = True if 'OPENEDAI_DEBUG' in os.environ else False
# Optional, install the module and download the model to enable
# v1/embeddings
try:
from sentence_transformers import SentenceTransformer
except ImportError:
pass
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embedding_model = None
standard_stopping_strings = ['\nsystem:', '\nuser:', '\nhuman:', '\nassistant:', '\n###', ]
# little helper to get defaults if arg is present but None and should be the same type as default.
def default(dic, key, default):
val = dic.get(key, default)
if type(val) != type(default):
# maybe it's just something like 1 instead of 1.0
try:
v = type(default)(val)
if type(val)(v) == val: # if it's the same value passed in, it's ok.
return v
except:
pass
val = default
return val
def clamp(value, minvalue, maxvalue):
return max(minvalue, min(value, maxvalue))
class Handler(BaseHTTPRequestHandler):
def do_GET(self):
if self.path.startswith('/v1/models'):
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
# TODO: list all models and allow model changes via API? Lora's?
# This API should list capabilities, limits and pricing...
models = [{
"id": shared.model_name, # The real chat/completions model
"object": "model",
"owned_by": "user",
"permission": []
}, {
"id": st_model, # The real sentence transformer embeddings model
"object": "model",
"owned_by": "user",
"permission": []
}, { # these are expected by so much, so include some here as a dummy
"id": "gpt-3.5-turbo", # /v1/chat/completions
"object": "model",
"owned_by": "user",
"permission": []
}, {
"id": "text-curie-001", # /v1/completions, 2k context
"object": "model",
"owned_by": "user",
"permission": []
}, {
"id": "text-davinci-002", # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768
"object": "model",
"owned_by": "user",
"permission": []
}]
response = ''
if self.path == '/v1/models':
response = json.dumps({
"object": "list",
"data": models,
})
else:
the_model_name = self.path[len('/v1/models/'):]
response = json.dumps({
"id": the_model_name,
"object": "model",
"owned_by": "user",
"permission": []
})
self.wfile.write(response.encode('utf-8'))
else:
self.send_error(404)
def do_POST(self):
content_length = int(self.headers['Content-Length'])
body = json.loads(self.rfile.read(content_length).decode('utf-8'))
if debug:
print(self.headers) # did you know... python-openai sends your linux kernel & python version?
if debug:
print(body)
if '/completions' in self.path or '/generate' in self.path:
is_legacy = '/generate' in self.path
is_chat = 'chat' in self.path
resp_list = 'data' if is_legacy else 'choices'
# XXX model is ignored for now
# model = body.get('model', shared.model_name) # ignored, use existing for now
model = shared.model_name
created_time = int(time.time())
cmpl_id = "conv-%d" % (created_time)
# Try to use openai defaults or map them to something with the same intent
stopping_strings = default(shared.settings, 'custom_stopping_strings', [])
if 'stop' in body:
if isinstance(body['stop'], str):
stopping_strings = [body['stop']]
elif isinstance(body['stop'], list):
stopping_strings = body['stop']
truncation_length = default(shared.settings, 'truncation_length', 2048)
truncation_length = clamp(default(body, 'truncation_length', truncation_length), 1, truncation_length)
default_max_tokens = truncation_length if is_chat else 16 # completions default, chat default is 'inf' so we need to cap it., the default for chat is "inf"
max_tokens_str = 'length' if is_legacy else 'max_tokens'
max_tokens = default(body, max_tokens_str, default(shared.settings, 'max_new_tokens', default_max_tokens))
# hard scale this, assuming the given max is for GPT3/4, perhaps inspect the requested model and lookup the context max
while truncation_length <= max_tokens:
max_tokens = max_tokens // 2
req_params = {
'max_new_tokens': max_tokens,
'temperature': default(body, 'temperature', 1.0),
'top_p': default(body, 'top_p', 1.0),
'top_k': default(body, 'best_of', 1),
# XXX not sure about this one, seems to be the right mapping, but the range is different (-2..2.0) vs 0..2
# 0 is default in openai, but 1.0 is default in other places. Maybe it's scaled? scale it.
'repetition_penalty': 1.18, # (default(body, 'presence_penalty', 0) + 2.0 ) / 2.0, # 0 the real default, 1.2 is the model default, but 1.18 works better.
# XXX not sure about this one either, same questions. (-2..2.0), 0 is default not 1.0, scale it.
'encoder_repetition_penalty': 1.0, # (default(body, 'frequency_penalty', 0) + 2.0) / 2.0,
'suffix': body.get('suffix', None),
'stream': default(body, 'stream', False),
'echo': default(body, 'echo', False),
#####################################################
'seed': shared.settings.get('seed', -1),
# int(body.get('n', 1)) # perhaps this should be num_beams or chat_generation_attempts? 'n' doesn't have a direct map
# unofficial, but it needs to get set anyways.
'truncation_length': truncation_length,
# no more args.
'add_bos_token': shared.settings.get('add_bos_token', True),
'do_sample': True,
'typical_p': 1.0,
'min_length': 0,
'no_repeat_ngram_size': 0,
'num_beams': 1,
'penalty_alpha': 0.0,
'length_penalty': 1,
'early_stopping': False,
'ban_eos_token': False,
'skip_special_tokens': True,
}
# fixup absolute 0.0's
for par in ['temperature', 'repetition_penalty', 'encoder_repetition_penalty']:
req_params[par] = clamp(req_params[par], 0.001, 1.999)
self.send_response(200)
if req_params['stream']:
self.send_header('Content-Type', 'text/event-stream')
self.send_header('Cache-Control', 'no-cache')
# self.send_header('Connection', 'keep-alive')
else:
self.send_header('Content-Type', 'application/json')
self.end_headers()
token_count = 0
completion_token_count = 0
prompt = ''
stream_object_type = ''
object_type = ''
if is_chat:
stream_object_type = 'chat.completions.chunk'
object_type = 'chat.completions'
messages = body['messages']
system_msg = '' # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
if 'prompt' in body: # Maybe they sent both? This is not documented in the API, but some clients seem to do this.
system_msg = body['prompt']
chat_msgs = []
for m in messages:
role = m['role']
content = m['content']
# name = m.get('name', 'user')
if role == 'system':
system_msg += content
else:
chat_msgs.extend([f"\n{role}: {content.strip()}"]) # Strip content? linefeed?
system_token_count = len(encode(system_msg)[0])
remaining_tokens = req_params['truncation_length'] - req_params['max_new_tokens'] - system_token_count
chat_msg = ''
while chat_msgs:
new_msg = chat_msgs.pop()
new_size = len(encode(new_msg)[0])
if new_size <= remaining_tokens:
chat_msg = new_msg + chat_msg
remaining_tokens -= new_size
else:
# TODO: clip a message to fit?
# ie. user: ...<clipped message>
break
if len(chat_msgs) > 0:
print(f"truncating chat messages, dropping {len(chat_msgs)} messages.")
if system_msg:
prompt = 'system: ' + system_msg + '\n' + chat_msg + '\nassistant: '
else:
prompt = chat_msg + '\nassistant: '
token_count = len(encode(prompt)[0])
# pass with some expected stop strings.
# some strange cases of "##| Instruction: " sneaking through.
stopping_strings += standard_stopping_strings
req_params['custom_stopping_strings'] = stopping_strings
else:
stream_object_type = 'text_completion.chunk'
object_type = 'text_completion'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if is_legacy:
prompt = body['context'] # Older engines.generate API
else:
prompt = body['prompt'] # XXX this can be different types
if isinstance(prompt, list):
prompt = ''.join(prompt) # XXX this is wrong... need to split out to multiple calls?
token_count = len(encode(prompt)[0])
if token_count >= req_params['truncation_length']:
new_len = int(len(prompt) * (float(shared.settings['truncation_length']) - req_params['max_new_tokens']) / token_count)
prompt = prompt[-new_len:]
print(f"truncating prompt to {new_len} characters, was {token_count} tokens. Now: {len(encode(prompt)[0])} tokens.")
# pass with some expected stop strings.
# some strange cases of "##| Instruction: " sneaking through.
stopping_strings += standard_stopping_strings
req_params['custom_stopping_strings'] = stopping_strings
shared.args.no_stream = not req_params['stream']
if not shared.args.no_stream:
shared.args.chat = True
# begin streaming
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
}],
}
if stream_object_type == 'text_completion.chunk':
chunk[resp_list][0]["text"] = ""
else:
# This is coming back as "system" to the openapi cli, not sure why.
# So yeah... do both methods? delta and messages.
chunk[resp_list][0]["message"] = {'role': 'assistant', 'content': ''}
chunk[resp_list][0]["delta"] = {'role': 'assistant', 'content': ''}
# { "role": "assistant" }
response = 'data: ' + json.dumps(chunk) + '\n'
self.wfile.write(response.encode('utf-8'))
# generate reply #######################################
if debug:
print({'prompt': prompt, 'req_params': req_params, 'stopping_strings': stopping_strings})
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings)
answer = ''
seen_content = ''
longest_stop_len = max([len(x) for x in stopping_strings])
for a in generator:
if isinstance(a, str):
answer = a
else:
answer = a[0]
stop_string_found = False
len_seen = len(seen_content)
search_start = max(len_seen - longest_stop_len, 0)
for string in stopping_strings:
idx = answer.find(string, search_start)
if idx != -1:
answer = answer[:idx] # clip it.
stop_string_found = True
if stop_string_found:
break
# If something like "\nYo" is generated just before "\nYou:"
# is completed, buffer and generate more, don't send it
buffer_and_continue = False
for string in stopping_strings:
for j in range(len(string) - 1, 0, -1):
if answer[-j:] == string[:j]:
buffer_and_continue = True
break
else:
continue
break
if buffer_and_continue:
continue
if not shared.args.no_stream:
# Streaming
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
}],
}
if stream_object_type == 'text_completion.chunk':
chunk[resp_list][0]['text'] = new_content
else:
# So yeah... do both methods? delta and messages.
chunk[resp_list][0]['message'] = {'content': new_content}
chunk[resp_list][0]['delta'] = {'content': new_content}
response = 'data: ' + json.dumps(chunk) + '\n'
self.wfile.write(response.encode('utf-8'))
completion_token_count += len(encode(new_content)[0])
if not shared.args.no_stream:
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": model, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": "stop",
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if stream_object_type == 'text_completion.chunk':
chunk[resp_list][0]['text'] = ''
else:
# So yeah... do both methods? delta and messages.
chunk[resp_list][0]['message'] = {'content': ''}
chunk[resp_list][0]['delta'] = {}
response = 'data: ' + json.dumps(chunk) + '\ndata: [DONE]\n'
self.wfile.write(response.encode('utf-8'))
# Finished if streaming.
if debug:
print({'response': answer})
return
if debug:
print({'response': answer})
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= req_params['truncation_length']:
stop_reason = "length"
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": model, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if is_chat:
resp[resp_list][0]["message"] = {"role": "assistant", "content": answer}
else:
resp[resp_list][0]["text"] = answer
response = json.dumps(resp)
self.wfile.write(response.encode('utf-8'))
elif '/embeddings' in self.path and embedding_model is not None:
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
input = body['input'] if 'input' in body else body['text']
if type(input) is str:
input = [input]
embeddings = embedding_model.encode(input).tolist()
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)]
response = json.dumps({
"object": "list",
"data": data,
"model": st_model, # return the real model
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
})
if debug:
print(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
self.wfile.write(response.encode('utf-8'))
elif '/moderations' in self.path:
# for now do nothing, just don't error.
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
response = json.dumps({
"id": "modr-5MWoLO",
"model": "text-moderation-001",
"results": [{
"categories": {
"hate": False,
"hate/threatening": False,
"self-harm": False,
"sexual": False,
"sexual/minors": False,
"violence": False,
"violence/graphic": False
},
"category_scores": {
"hate": 0.0,
"hate/threatening": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"sexual/minors": 0.0,
"violence": 0.0,
"violence/graphic": 0.0
},
"flagged": False
}]
})
self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/token-count':
# NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
tokens = encode(body['prompt'])[0]
response = json.dumps({
'results': [{
'tokens': len(tokens)
}]
})
self.wfile.write(response.encode('utf-8'))
else:
print(self.path, self.headers)
self.send_error(404)
def run_server():
global embedding_model
try:
embedding_model = SentenceTransformer(st_model)
print(f"\nLoaded embedding model: {st_model}, max sequence length: {embedding_model.max_seq_length}")
except:
print(f"\nFailed to load embedding model: {st_model}")
pass
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port'])
server = ThreadingHTTPServer(server_addr, Handler)
if shared.args.share:
try:
from flask_cloudflared import _run_cloudflared
public_url = _run_cloudflared(params['port'], params['port'] + 1)
print(f'Starting OpenAI compatible api at {public_url}/')
except ImportError:
print('You should install flask_cloudflared manually')
else:
print(f'Starting OpenAI compatible api at http://{server_addr[0]}:{server_addr[1]}/')
server.serve_forever()
def setup():
Thread(target=run_server, daemon=True).start()
|