File size: 8,197 Bytes
f0c7f30
 
4d2d919
f0c7f30
 
 
 
 
52b731a
 
f0c7f30
 
 
 
52b731a
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
 
52b731a
4d2d919
 
 
 
 
 
 
f0c7f30
 
 
 
 
3aba82e
 
f0c7f30
a67a3ad
 
f0c7f30
3aba82e
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aba82e
 
 
 
f0c7f30
 
3aba82e
 
 
f0c7f30
 
 
 
 
 
 
 
52b731a
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
 
 
52b731a
f0c7f30
 
 
 
 
 
a67a3ad
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
3aba82e
52b731a
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b731a
 
 
f0c7f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b731a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2071ed
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import base64
import os
import shutil
from collections import defaultdict
from datetime import date, datetime, timedelta
from io import BytesIO

import dotenv
import matplotlib.pyplot as plt
import seaborn as sns
from datasets import load_dataset
from dateutil.parser import parse
from dateutil.tz import tzutc
from fasthtml.common import *
from fh_matplotlib import matplotlib2fasthtml
from huggingface_hub import login, whoami

dotenv.load_dotenv()

style = Style("""
                .grid { margin-bottom: 1rem; }
                .card { display: flex; flex-direction: column; }
                .card img { margin-bottom: 0.5rem; }
                .card h5 { margin: 0; font-size: 0.9rem; line-height: 1.2; }
                .card a { color: inherit; text-decoration: none; }
                .card a:hover { text-decoration: underline; }
            """)


# delete data folder
if os.path.exists("data"):
    try:
        shutil.rmtree("data")
    except OSError as e:
        print("Error: %s : %s" % ("data", e.strerror))

app, rt = fast_app(html_style=(style,))

login(token=os.environ.get("HF_TOKEN"))

hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
HF_REPO_ID_TXT = f"{hf_user}/zotero-answer-ai-texts"
HF_REPO_ID_IMG = f"{hf_user}/zotero-answer-ai-images"

abstract_ds = load_dataset(HF_REPO_ID_TXT, "abstracts", split="train")
article_ds = load_dataset(HF_REPO_ID_TXT, "articles", split="train")

image_ds = load_dataset(HF_REPO_ID_IMG, "images_first_page", split="train")


def parse_date(date_string):
    try:
        return parse(date_string).astimezone(tzutc()).date()
    except ValueError:
        return date.today()


def get_week_start(date_obj):
    return date_obj - timedelta(days=date_obj.weekday())


week2articles = defaultdict(list)
for article in article_ds:
    date_added = parse_date(article["date_added"])
    week_start = get_week_start(date_added)
    week2articles[week_start].append(article["arxiv_id"])

weeks = sorted(week2articles.keys(), reverse=True)

arxiv2article = {article["arxiv_id"]: article for article in article_ds}
arxiv2abstract = {abstract["arxiv_id"]: abstract for abstract in abstract_ds}
arxiv2image = {image["arxiv_id"]: image for image in image_ds}


def get_article_details(arxiv_id):
    article = arxiv2article.get(arxiv_id, {})
    abstract = arxiv2abstract.get(arxiv_id, {})
    image = arxiv2image.get(arxiv_id, {})
    return article, abstract, image


def generate_week_content(current_week):
    week_index = weeks.index(current_week)
    prev_week = weeks[week_index + 1] if week_index < len(weeks) - 1 else None
    next_week = weeks[week_index - 1] if week_index > 0 else None

    nav_buttons = Div(
        Button(
            "← Previous Week",
            hx_get=f"/week/{prev_week}" if prev_week else "#",
            hx_target="#content",
            hx_swap="innerHTML",
            disabled=not prev_week,
        ),
        Button(
            "Next Week β†’",
            hx_get=f"/week/{next_week}" if next_week else "#",
            hx_target="#content",
            hx_swap="innerHTML",
            disabled=not next_week,
        ),
        A("View Stats", href="/stats", cls="button"),
    )

    articles = week2articles[current_week]
    article_cards = []
    for arxiv_id in articles:
        article, abstract, image = get_article_details(arxiv_id)
        article_title = article["contents"][0].get("paper_title", "article") if article["contents"] else "article"

        card_content = [
            H5(
                A(
                    article_title,
                    href=f"https://arxiv.org/abs/{arxiv_id}",
                    target="_blank",
                )
            )
        ]

        if image:
            pil_image = image["image"]  # image[0]["image"]
            pil_image.thumbnail((500, 500))
            img_byte_arr = BytesIO()
            pil_image.save(img_byte_arr, format="JPEG")
            img_byte_arr = img_byte_arr.getvalue()
            image_url = f"data:image/jpeg;base64,{base64.b64encode(img_byte_arr).decode('utf-8')}"
            card_content.insert(
                0,
                Img(
                    src=image_url,
                    alt="Article image",
                    style="max-width: 100%; height: auto; margin-bottom: 15px;",
                ),
            )

        article_cards.append(Card(*card_content, cls="mb-4"))

    grid = Grid(
        *article_cards,
        style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 1rem;",
    )

    week_end = current_week + timedelta(days=6)
    return Div(
        nav_buttons,
        Br(),
        H5(f"{current_week.strftime('%B %d')} - {week_end.strftime('%B %d, %Y')} ({len(articles)} articles)"),
        Br(),
        grid,
        nav_buttons,
        id="content",
    )


@rt("/")
def get():
    return Titled("AnswerAI Zotero Weekly", generate_week_content(weeks[0]))


@rt("/week/{date}")
def get(date: str):
    try:
        current_week = datetime.strptime(date, "%Y-%m-%d").date()
        return generate_week_content(current_week)
    except Exception as e:
        return Div(f"Error displaying articles: {str(e)}")


@rt("/stats")
async def get():
    @matplotlib2fasthtml
    def generate_chart():
        end_date = max(weeks)
        start_date = end_date - timedelta(weeks=11)

        dates = []
        counts = []
        current_date = start_date
        while current_date <= end_date:
            count = len(week2articles[current_date])
            date_str = current_date.strftime("%d-%B-%Y")
            dates.append(date_str)
            counts.append(count)
            current_date += timedelta(weeks=1)

        plt.figure(figsize=(12, 6))
        sns.set_style("darkgrid")
        # sns.set_palette("deep")

        ax = sns.barplot(x=dates, y=counts)

        plt.title("Papers per Week (Last 12 Weeks)", fontsize=16, fontweight="bold")
        plt.xlabel("Week", fontsize=12)
        plt.ylabel("Number of Papers", fontsize=12)

        # Rotate and align the tick labels so they look better
        plt.xticks(rotation=45, ha="right")

        # Use a tight layout to prevent the labels from being cut off
        plt.tight_layout()

        # Add value labels on top of each bar
        for i, v in enumerate(counts):
            ax.text(i, v + 0.5, str(v), ha="center", va="bottom")

        # Increase y-axis limit slightly to accommodate the value labels
        plt.ylim(0, max(counts) * 1.1)

    @matplotlib2fasthtml
    def generate_contributions_chart():
        article_df = article_ds.data.to_pandas()
        added_by_df = article_df.groupby("added_by").size().reset_index(name="count")
        added_by_df = added_by_df.sort_values("count", ascending=False)  # Ascending for bottom-to-top order

        plt.figure(figsize=(12, 8))
        sns.set_style("darkgrid")
        sns.set_palette("deep")

        ax = sns.barplot(x="count", y="added_by", data=added_by_df)

        plt.title("Upload Counts", fontsize=16, fontweight="bold")
        plt.xlabel("Number of Articles Added", fontsize=12)
        plt.ylabel("User", fontsize=12)

        # Add value labels to the end of each bar
        for i, v in enumerate(added_by_df["count"]):
            ax.text(v + 0.5, i, str(v), va="center")

        # Adjust x-axis to make room for labels
        plt.xlim(0, max(added_by_df["count"]) * 1.1)

        plt.tight_layout()

    # chart = Div(generate_chart(), id="chart")
    bar_chart = Div(generate_chart(), id="bar-chart")
    pie_chart = Div(generate_contributions_chart(), id="pie-chart")

    # add contributions
    article_df = article_ds.data.to_pandas()
    added_by_df = article_df.groupby("added_by").size().reset_index(name="count")
    added_by_df = added_by_df.sort_values("count", ascending=False)

    return Titled(
        "AnswerAI Zotero Stats",
        H5("Papers per Week (Last 12 Weeks)"),
        bar_chart,
        Br(),
        H5("Contributions by User"),
        pie_chart,
        Br(),
        A("Back to Weekly View", href="/", cls="button"),
    )


# serve()

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))