Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
from torch import nn | |
import math | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import BaseOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from .attention import BasicTransformerBlock | |
class TransformerTemporalModelOutput(BaseOutput): | |
""" | |
The output of [`TransformerTemporalModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. | |
""" | |
sample: torch.FloatTensor | |
class TransformerTemporalModel(ModelMixin, ConfigMixin): | |
""" | |
A Transformer model for video-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlock` attention should contain a bias parameter. | |
double_self_attention (`bool`, *optional*): | |
Configure if each `TransformerBlock` should contain two self-attention layers. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
norm_elementwise_affine: bool = True, | |
double_self_attention: bool = True, | |
): | |
super().__init__() | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
double_self_attention=double_self_attention, | |
norm_elementwise_affine=norm_elementwise_affine, | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
class_labels=None, | |
num_frames=1, | |
cross_attention_kwargs=None, | |
return_dict: bool = True, | |
attention_mask=None, | |
encoder_attention_mask=None, | |
**kwargs, | |
): | |
""" | |
The [`TransformerTemporal`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input hidden_states. | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.long`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is | |
returned, otherwise a `tuple` where the first element is the sample tensor. | |
""" | |
# 1. Input | |
batch_frames, channel, height, width = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
if attention_mask is not None: | |
if not isinstance(attention_mask, list): | |
# Attn mask - (32, 1, 1024 | |
new_attn_mask = attention_mask.clone() | |
# Convert to (2,16,1024) | |
new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2]) | |
# spatial_dim_attn_mask = int(math.sqrt(new_attn_mask.shape[-1])) | |
scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width))) | |
mask_x = int(height * scaling_factor) | |
mask_y = int(width * scaling_factor) | |
# Scale the attention mask possibly | |
new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor] | |
# Convert to (2,16,64) | |
new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1) | |
# Convert to (128, 1, 16) when hidden states are (128, 16, 1280) | |
new_attn_mask = new_attn_mask.reshape(-1,1,num_frames) | |
# Trying to invert this mask, so that background is the only thing active - | |
new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device) | |
else: | |
new_attn_mask_list = [] | |
for attn_mask in attention_mask: | |
new_attn_mask = attn_mask.clone() | |
new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2]) | |
scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width))) | |
mask_x = int(height * scaling_factor) | |
mask_y = int(width * scaling_factor) | |
# Scale the attention mask possibly | |
new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor] | |
new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1) | |
new_attn_mask = new_attn_mask.reshape(-1,1,num_frames) | |
new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device) | |
new_attn_mask_list.append(new_attn_mask) | |
new_attn_mask = new_attn_mask_list | |
else: | |
new_attn_mask = None | |
residual = hidden_states | |
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4) | |
hidden_states = self.norm(hidden_states) | |
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
attention_mask=new_attn_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
# make_2d_attention_mask=True, # Check this | |
# block_diagonal_attention=True, # TODO - Check this | |
**kwargs, | |
) | |
# 3. Output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states[None, None, :] | |
.reshape(batch_size, height, width, channel, num_frames) | |
.permute(0, 3, 4, 1, 2) | |
.contiguous() | |
) | |
hidden_states = hidden_states.reshape(batch_frames, channel, height, width) | |
output = hidden_states + residual | |
if not return_dict: | |
return (output,) | |
return TransformerTemporalModelOutput(sample=output) |