Spaces:
Runtime error
Runtime error
File size: 9,250 Bytes
44f2ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import os
import numpy as np
from gradio_utils import *
def image_mod(image):
return image.rotate(45)
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from models.pipelines import TextToVideoSDPipelineSpatialAware
NUM_POINTS = 3
NUM_FRAMES = 24
LARGE_BOX_SIZE = 256
def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None,
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=320, width=576 ).frames
if get_latents:
video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, output_type="latent").frames
return video_frames, video_latents
return video_frames
# def generate_bb(prompt, fg_object, aspect_ratio, size, trajectory):
# if len(trajectory['layers']) < NUM_POINTS:
# raise ValueError
# final_canvas = torch.zeros((NUM_FRAMES,320,576))
# bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
# bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 0.75) if aspect_ratio == "horizontal" else int(bbox_size_x * 1.25)
# bbox_coords = []
# # TODO add checks for trajectory
# for t in trajectory['layers']:
# bbox_coords.append([int(t.sum(axis=-2).argmax()*576/800), int(t.sum(axis=-1)[140:460].argmax())])
# bbox_coords = np.array(bbox_coords)
# # Make a list of length 24
# # Each element is a list of length 2
# # First element is the x coordinate of the bbox
# # Second element is a set of y coordinates of the bbox
# new_bbox_coords = [np.zeros(2,) for i in range(NUM_FRAMES)]
# divisor = int(NUM_FRAMES / (NUM_POINTS-1))
# for i in range(NUM_POINTS-1):
# new_bbox_coords[i*divisor] = bbox_coords[i]
# new_bbox_coords[-1] = bbox_coords[-1]
# # Linearly interpolate in the middle
# for i in range(NUM_POINTS-1):
# for j in range(1,divisor):
# new_bbox_coords[i*divisor+j][1] = int((bbox_coords[i][0] * (divisor-j) + bbox_coords[(i+1)][0] * j) / divisor)
# new_bbox_coords[i*divisor+j][0] = int((bbox_coords[i][1] * (divisor-j) + bbox_coords[(i+1)][1] * j) / divisor)
# for i in range(NUM_FRAMES):
# x = int(new_bbox_coords[i][0])
# y = int(new_bbox_coords[i][1])
# final_canvas[i,int(x-bbox_size_x/2):int(x+bbox_size_x/2), int(y-bbox_size_y/2):int(y+bbox_size_y/2)] = 1
# torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# try:
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
# except:
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
# fg_masks = F.interpolate(final_canvas.unsqueeze(1), size=(40,72), mode="nearest").to(torch_device)
# # Save fg_masks as images
# for i in range(NUM_FRAMES):
# cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
# seed = 2
# random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
# overall_prompt = f"A realistic lively {prompt}"
# video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
# fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
# return create_video(video_frames,fps=8, type="final")
def interpolate_points(points, target_length):
print(points)
if len(points) == target_length:
return points
elif len(points) > target_length:
# Subsample the points uniformly
indices = np.round(np.linspace(0, len(points) - 1, target_length)).astype(int)
return [points[i] for i in indices]
else:
# Linearly interpolate to get more points
interpolated_points = []
num_points_to_add = target_length - len(points)
points_added_per_segment = num_points_to_add // (len(points) - 1)
for i in range(len(points) - 1):
start, end = points[i], points[i + 1]
interpolated_points.append(start)
for j in range(1, points_added_per_segment + 1):
fraction = j / (points_added_per_segment + 1)
new_point = np.round(start + fraction * (end - start))
interpolated_points.append(new_point)
# Add the last point
interpolated_points.append(points[-1])
# If there are still not enough points, add extras at the end
while len(interpolated_points) < target_length:
interpolated_points.append(points[-1])
return interpolated_points
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
except:
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
def generate_bb(prompt, fg_object, aspect_ratio, size, motion_direction, trajectory):
# if len(trajectory['layers']) < NUM_POINTS:
# raise ValueError
final_canvas = torch.zeros((NUM_FRAMES,320//8,576//8))
bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 1.33) if aspect_ratio == "horizontal" else int(bbox_size_x * 0.75)
bbox_coords = []
image = trajectory['composite']
print(image.shape)
image = cv2.resize(image,(576, 320))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY_INV)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Process each contour
bbox_points = []
for contour in contours:
# You can approximate the contour to reduce the number of points
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# Extracting and printing coordinates
for point in approx:
y, x = point.ravel()
if x in range(1,319) and y in range(1,575):
bbox_points.append([x,y])
if motion_direction in ['l2r', 'r2l']:
sorted_points = sorted(bbox_points, key=lambda x: x[1], reverse=motion_direction=="r2l")
else:
sorted_points = sorted(bbox_points, key=lambda x: x[0], reverse=motion_direction=="d2u")
target_length = 24
final_points = interpolate_points(np.array(sorted_points), target_length)
# Remember to reverse the co-ordinates
for i in range(NUM_FRAMES):
x = int(final_points[i][0])
y = int(final_points[i][1])
# Added Padding
final_canvas[i, max(int(x-bbox_size_x/2),16) // 8:min(int(x+bbox_size_x/2), 304)// 8,
max(int(y-bbox_size_y/2),16)// 8:min(int(y+bbox_size_y/2),560)// 8] = 1
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fg_masks = final_canvas.unsqueeze(1).to(torch_device)
# # Save fg_masks as images
for i in range(NUM_FRAMES):
cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
seed = 2
random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
overall_prompt = f"A realistic lively {prompt}"
video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
return create_video(video_frames,fps=8, type="final")
demo = gr.Interface(
fn=generate_bb,
inputs=["text", "text", gr.Radio(choices=["square", "horizontal", "vertical"]), gr.Radio(choices=["small", "medium", "large"]), gr.Radio(choices=["l2r", "r2l", "u2d", "d2u"]),
gr.Paint(value={'background':np.zeros((320,576)), 'layers': [], 'composite': np.zeros((320,576))},type="numpy", image_mode="RGB", height=320, width=576)],
outputs=gr.Video(),
)
if __name__ == "__main__":
demo.launch(share=True)
|