File size: 9,250 Bytes
44f2ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import os
import numpy as np
from gradio_utils import *

def image_mod(image):
    return image.rotate(45)

import os

import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))


import cv2
import numpy as np
import torch
import torch.nn.functional as F




from models.pipelines import TextToVideoSDPipelineSpatialAware



NUM_POINTS = 3
NUM_FRAMES = 24
LARGE_BOX_SIZE = 256


def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None, 
        fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
    
    video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks, 
    frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
    make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=320, width=576 ).frames
    if get_latents:
        video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, output_type="latent").frames
        return video_frames, video_latents
    
    return video_frames


# def generate_bb(prompt, fg_object, aspect_ratio, size, trajectory):

#     if len(trajectory['layers']) < NUM_POINTS:
#       raise ValueError
#     final_canvas = torch.zeros((NUM_FRAMES,320,576))

#     bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
#     bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 0.75) if aspect_ratio == "horizontal" else int(bbox_size_x * 1.25)

#     bbox_coords = []
#     # TODO add checks for trajectory
#     for t in trajectory['layers']:
#         bbox_coords.append([int(t.sum(axis=-2).argmax()*576/800), int(t.sum(axis=-1)[140:460].argmax())])
#     bbox_coords = np.array(bbox_coords)
#     # Make a list of length 24
#     # Each element is a list of length 2
#     # First element is the x coordinate of the bbox
#     # Second element is a set of y coordinates of the bbox
#     new_bbox_coords = [np.zeros(2,) for i in range(NUM_FRAMES)]
#     divisor = int(NUM_FRAMES / (NUM_POINTS-1))
#     for i in range(NUM_POINTS-1):
#         new_bbox_coords[i*divisor] = bbox_coords[i]
#     new_bbox_coords[-1] = bbox_coords[-1]

#     # Linearly interpolate in the middle
#     for i in range(NUM_POINTS-1):
#         for j in range(1,divisor):
#             new_bbox_coords[i*divisor+j][1] = int((bbox_coords[i][0] * (divisor-j) + bbox_coords[(i+1)][0] * j) / divisor)
#             new_bbox_coords[i*divisor+j][0] = int((bbox_coords[i][1] * (divisor-j) + bbox_coords[(i+1)][1] * j) / divisor)

#     for i in range(NUM_FRAMES):
#         x = int(new_bbox_coords[i][0])
#         y = int(new_bbox_coords[i][1])
#         final_canvas[i,int(x-bbox_size_x/2):int(x+bbox_size_x/2), int(y-bbox_size_y/2):int(y+bbox_size_y/2)] = 1

#     torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#     try:
#         pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
#             "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
#     except:
#         pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
#             "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)

#     fg_masks = F.interpolate(final_canvas.unsqueeze(1), size=(40,72), mode="nearest").to(torch_device)
    
#     # Save fg_masks as images
#     for i in range(NUM_FRAMES):
#         cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
    
    
    
#     seed = 2
#     random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
#     overall_prompt = f"A realistic lively {prompt}"
#     video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40, 
#                         fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
    
#     return create_video(video_frames,fps=8, type="final")


def interpolate_points(points, target_length):
    print(points)
    if len(points) == target_length:
        return points
    elif len(points) > target_length:
        # Subsample the points uniformly
        indices = np.round(np.linspace(0, len(points) - 1, target_length)).astype(int)
        return [points[i] for i in indices]
    else:
        # Linearly interpolate to get more points
        interpolated_points = []
        num_points_to_add = target_length - len(points)
        points_added_per_segment = num_points_to_add // (len(points) - 1)

        for i in range(len(points) - 1):
            start, end = points[i], points[i + 1]
            interpolated_points.append(start)
            for j in range(1, points_added_per_segment + 1):
                fraction = j / (points_added_per_segment + 1)
                new_point = np.round(start + fraction * (end - start))
                interpolated_points.append(new_point)

        # Add the last point
        interpolated_points.append(points[-1])

        # If there are still not enough points, add extras at the end
        while len(interpolated_points) < target_length:
            interpolated_points.append(points[-1])

        return interpolated_points


torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


try:
    pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
        "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
except:
    pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
        "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)


def generate_bb(prompt, fg_object, aspect_ratio, size, motion_direction, trajectory):

    # if len(trajectory['layers']) < NUM_POINTS:
    #   raise ValueError
    final_canvas = torch.zeros((NUM_FRAMES,320//8,576//8))

    bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
    bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 1.33) if aspect_ratio == "horizontal" else int(bbox_size_x * 0.75)

    bbox_coords = []

    image = trajectory['composite']
    print(image.shape)

    image = cv2.resize(image,(576, 320))
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    _, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY_INV)
    contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    # Process each contour
    bbox_points = []
    for contour in contours:
        # You can approximate the contour to reduce the number of points
        epsilon = 0.01 * cv2.arcLength(contour, True)
        approx = cv2.approxPolyDP(contour, epsilon, True)

        # Extracting and printing coordinates
        for point in approx:
            y, x = point.ravel()
            if x in range(1,319) and y in range(1,575):
              bbox_points.append([x,y])

    if motion_direction in ['l2r', 'r2l']:
      sorted_points = sorted(bbox_points, key=lambda x: x[1], reverse=motion_direction=="r2l")
    else:
      sorted_points = sorted(bbox_points, key=lambda x: x[0], reverse=motion_direction=="d2u")
    target_length = 24
    final_points = interpolate_points(np.array(sorted_points), target_length)

    # Remember to reverse the co-ordinates
    for i in range(NUM_FRAMES):
      x = int(final_points[i][0])
      y = int(final_points[i][1])
      # Added Padding
      final_canvas[i, max(int(x-bbox_size_x/2),16) // 8:min(int(x+bbox_size_x/2), 304)// 8,  
                    max(int(y-bbox_size_y/2),16)// 8:min(int(y+bbox_size_y/2),560)// 8] = 1


    torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    fg_masks = final_canvas.unsqueeze(1).to(torch_device)
#     # Save fg_masks as images
    for i in range(NUM_FRAMES):
        cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
    
    seed = 2
    random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
    overall_prompt = f"A realistic lively {prompt}"
    video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40, 
                        fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
    
    return create_video(video_frames,fps=8, type="final")



demo = gr.Interface(
    fn=generate_bb,
    inputs=["text", "text", gr.Radio(choices=["square", "horizontal", "vertical"]), gr.Radio(choices=["small", "medium", "large"]), gr.Radio(choices=["l2r", "r2l", "u2d", "d2u"]),
            gr.Paint(value={'background':np.zeros((320,576)), 'layers': [], 'composite': np.zeros((320,576))},type="numpy", image_mode="RGB", height=320, width=576)],
    outputs=gr.Video(),
)


if __name__ == "__main__":
    demo.launch(share=True)