File size: 13,194 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from __future__ import annotations

import typing as T
from dataclasses import dataclass

import torch
from typing_extensions import Self

from esm.utils.misc import fp32_autocast_context


def maybe_compile(func, x: torch.Tensor):
    # Sometimes, torch compile seems to give issues for CPU tensors...
    return torch.compile(func) if x.device.type == "cuda" else func


@T.runtime_checkable
class Rotation(T.Protocol):
    @classmethod
    def identity(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self:
        ...

    @classmethod
    def random(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self:
        ...

    def __getitem__(self, idx: T.Any) -> Self:
        ...

    @property
    def tensor(self) -> torch.Tensor:
        # We claim that this should be zero-cost abstraction that returns the raw tensor backing this
        # object. The raw tensor should always have exactly 1 more dim than self.shape, which should be
        # implemented using reshaping
        ...

    @property
    def shape(self) -> torch.Size:
        # The "shape" of the rotation, as if it was a torch.tensor object
        # This means that 1x4 quaternions are treated as size (1,) for example
        ...

    def as_matrix(self) -> RotationMatrix:
        ...

    def compose(self, other: Self) -> Self:
        # To be safe, we force users to explicitly convert between rotation types.
        ...

    def convert_compose(self, other: Self) -> Self:
        # This function will automatically convert between types of rotations
        ...

    def apply(self, p: torch.Tensor) -> torch.Tensor:
        # rotates points by this rotation object
        ...

    def invert(self) -> Self:
        ...

    @property
    def dtype(self) -> torch.dtype:
        return self.tensor.dtype

    @property
    def device(self) -> torch.device:
        return self.tensor.device

    @property
    def requires_grad(self) -> bool:
        return self.tensor.requires_grad

    @classmethod
    def _from_tensor(cls, t: torch.Tensor) -> Self:
        # This function exists to simplify the below functions, esp type signatures
        # Its implementation is different from Affine3D.from_tensor and does not
        # autodetect rotation types.
        return cls(t)  # type: ignore

    def to(self, **kwargs) -> Self:
        return self._from_tensor(self.tensor.to(**kwargs))

    def detach(self, *args, **kwargs) -> Self:
        return self._from_tensor(self.tensor.detach(**kwargs))

    def tensor_apply(self, func) -> Self:
        # Applys a function to the underlying tensor
        return self._from_tensor(
            torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1)
        )


class RotationMatrix(Rotation):
    def __init__(self, rots: torch.Tensor):
        if rots.shape[-1] == 9:
            rots = rots.unflatten(-1, (3, 3))
        assert rots.shape[-1] == 3
        assert rots.shape[-2] == 3
        # Force full precision
        self._rots = rots.to(torch.float32)

    @classmethod
    def identity(cls, shape, **tensor_kwargs):
        rots = torch.eye(3, **tensor_kwargs)
        rots = rots.view(*[1 for _ in range(len(shape))], 3, 3)
        rots = rots.expand(*shape, -1, -1)
        return cls(rots)

    @classmethod
    def random(cls, shape, **tensor_kwargs):
        v1 = torch.randn((*shape, 3), **tensor_kwargs)
        v2 = torch.randn((*shape, 3), **tensor_kwargs)
        return cls(_graham_schmidt(v1, v2))

    def __getitem__(self, idx: T.Any) -> RotationMatrix:
        indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx)
        return RotationMatrix(self._rots[indices + (slice(None), slice(None))])

    @property
    def shape(self) -> torch.Size:
        return self._rots.shape[:-2]

    def as_matrix(self) -> RotationMatrix:
        return self

    def compose(self, other: RotationMatrix) -> RotationMatrix:
        with fp32_autocast_context(self._rots.device.type):
            return RotationMatrix(self._rots @ other._rots)

    def convert_compose(self, other: Rotation):
        return self.compose(other.as_matrix())

    def apply(self, p: torch.Tensor) -> torch.Tensor:
        with fp32_autocast_context(self.device.type):
            if self._rots.shape[-3] == 1:
                # This is a slight speedup over einsum for batched rotations
                return p @ self._rots.transpose(-1, -2).squeeze(-3)
            else:
                # einsum way faster than bmm!
                return torch.einsum("...ij,...j", self._rots, p)

    def invert(self) -> RotationMatrix:
        return RotationMatrix(self._rots.transpose(-1, -2))

    @property
    def tensor(self) -> torch.Tensor:
        return self._rots.flatten(-2)

    def to_3x3(self) -> torch.Tensor:
        return self._rots

    @staticmethod
    def from_graham_schmidt(
        x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12
    ) -> RotationMatrix:
        # A low eps here is necessary for good stability!
        return RotationMatrix(
            maybe_compile(_graham_schmidt, x_axis)(x_axis, xy_plane, eps)
        )


@dataclass(frozen=True)
class Affine3D:
    trans: torch.Tensor
    rot: Rotation

    def __post_init__(self):
        assert self.trans.shape[:-1] == self.rot.shape

    @staticmethod
    def identity(
        shape_or_affine: T.Union[tuple[int, ...], "Affine3D"],
        rotation_type: T.Type[Rotation] = RotationMatrix,
        **tensor_kwargs,
    ):
        # Creates a new identity Affine3D object with a specified shape
        # or the same shape as another Affine3D object.
        if isinstance(shape_or_affine, Affine3D):
            kwargs = {"dtype": shape_or_affine.dtype, "device": shape_or_affine.device}
            kwargs.update(tensor_kwargs)
            shape = shape_or_affine.shape
            rotation_type = type(shape_or_affine.rot)
        else:
            kwargs = tensor_kwargs
            shape = shape_or_affine
        return Affine3D(
            torch.zeros((*shape, 3), **kwargs), rotation_type.identity(shape, **kwargs)
        )

    @staticmethod
    def random(
        shape: tuple[int, ...],
        std: float = 1,
        rotation_type: T.Type[Rotation] = RotationMatrix,
        **tensor_kwargs,
    ) -> "Affine3D":
        return Affine3D(
            trans=torch.randn((*shape, 3), **tensor_kwargs).mul(std),
            rot=rotation_type.random(shape, **tensor_kwargs),
        )

    def __getitem__(self, idx: T.Any) -> "Affine3D":
        indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx)
        return Affine3D(
            trans=self.trans[indices + (slice(None),)],
            rot=self.rot[idx],
        )

    @property
    def shape(self) -> torch.Size:
        return self.trans.shape[:-1]

    @property
    def dtype(self) -> torch.dtype:
        return self.trans.dtype

    @property
    def device(self) -> torch.device:
        return self.trans.device

    @property
    def requires_grad(self) -> bool:
        return self.trans.requires_grad

    def to(self, **kwargs) -> "Affine3D":
        return Affine3D(self.trans.to(**kwargs), self.rot.to(**kwargs))

    def detach(self, *args, **kwargs) -> "Affine3D":
        return Affine3D(self.trans.detach(**kwargs), self.rot.detach(**kwargs))

    def tensor_apply(self, func) -> "Affine3D":
        # Applys a function to the underlying tensor
        return self.from_tensor(
            torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1)
        )

    def as_matrix(self):
        return Affine3D(trans=self.trans, rot=self.rot.as_matrix())

    def compose(self, other: "Affine3D", autoconvert: bool = False):
        rot = self.rot
        new_rot = (rot.convert_compose if autoconvert else rot.compose)(other.rot)
        new_trans = rot.apply(other.trans) + self.trans
        return Affine3D(trans=new_trans, rot=new_rot)

    def compose_rotation(self, other: Rotation, autoconvert: bool = False):
        return Affine3D(
            trans=self.trans,
            rot=(self.rot.convert_compose if autoconvert else self.rot.compose)(other),
        )

    def scale(self, v: torch.Tensor | float):
        return Affine3D(self.trans * v, self.rot)

    def mask(self, mask: torch.Tensor, with_zero=False):
        # Returns a transform where True positions in mask is identity
        if with_zero:
            tensor = self.tensor
            return Affine3D.from_tensor(
                torch.zeros_like(tensor).where(mask[..., None], tensor)
            )
        else:
            identity = self.identity(
                self.shape,
                rotation_type=type(self.rot),
                device=self.device,
                dtype=self.dtype,
            ).tensor
            return Affine3D.from_tensor(identity.where(mask[..., None], self.tensor))

    def apply(self, p: torch.Tensor) -> torch.Tensor:
        return self.rot.apply(p) + self.trans

    def invert(self):
        inv_rot = self.rot.invert()
        return Affine3D(trans=-inv_rot.apply(self.trans), rot=inv_rot)

    @property
    def tensor(self) -> torch.Tensor:
        return torch.cat([self.rot.tensor, self.trans], dim=-1)

    @staticmethod
    def from_tensor(t: torch.Tensor) -> "Affine3D":
        match t.shape[-1]:
            case 4:
                # Assume tensor 4x4 for backward compat with alphafold
                trans = t[..., :3, 3]
                rot = RotationMatrix(t[..., :3, :3])
            case 12:
                trans = t[..., -3:]
                rot = RotationMatrix(t[..., :-3].unflatten(-1, (3, 3)))
            case _:
                raise RuntimeError(
                    f"Cannot detect rotation fromat from {t.shape[-1] -3}-d flat vector"
                )
        return Affine3D(trans, rot)

    @staticmethod
    def from_tensor_pair(t: torch.Tensor, r: torch.Tensor) -> "Affine3D":
        return Affine3D(t, RotationMatrix(r))

    @staticmethod
    def from_graham_schmidt(
        neg_x_axis: torch.Tensor,
        origin: torch.Tensor,
        xy_plane: torch.Tensor,
        eps: float = 1e-10,
    ):
        # The arguments of this function is for parity with AlphaFold
        x_axis = origin - neg_x_axis
        xy_plane = xy_plane - origin
        return Affine3D(
            trans=origin, rot=RotationMatrix.from_graham_schmidt(x_axis, xy_plane, eps)
        )

    @staticmethod
    def cat(affines: list["Affine3D"], dim: int = 0):
        if dim < 0:
            dim = len(affines[0].shape) + dim
        return Affine3D.from_tensor(torch.cat([x.tensor for x in affines], dim=dim))


def _graham_schmidt(x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12):
    # A low eps here is necessary for good stability!
    with fp32_autocast_context(x_axis.device.type):
        e1 = xy_plane

        denom = torch.sqrt((x_axis**2).sum(dim=-1, keepdim=True) + eps)
        x_axis = x_axis / denom
        dot = (x_axis * e1).sum(dim=-1, keepdim=True)
        e1 = e1 - x_axis * dot
        denom = torch.sqrt((e1**2).sum(dim=-1, keepdim=True) + eps)
        e1 = e1 / denom
        e2 = torch.cross(x_axis, e1, dim=-1)

        rots = torch.stack([x_axis, e1, e2], dim=-1)

        return rots


def build_affine3d_from_coordinates(
    coords: torch.Tensor,  # (N, CA, C).
) -> tuple[Affine3D, torch.Tensor]:
    _MAX_SUPPORTED_DISTANCE = 1e6
    coord_mask = torch.all(
        torch.all(torch.isfinite(coords) & (coords < _MAX_SUPPORTED_DISTANCE), dim=-1),
        dim=-1,
    )

    def atom3_to_backbone_affine(bb_positions: torch.Tensor) -> Affine3D:
        N, CA, C = bb_positions.unbind(dim=-2)
        return Affine3D.from_graham_schmidt(C, CA, N)

    coords = coords.clone().float()
    coords[~coord_mask] = 0

    # NOTE(thayes): If you have already normalized the coordinates, then
    # the black hole affine translations will be zeros and the rotations will be
    # the identity.
    average_per_n_ca_c = coords.masked_fill(~coord_mask[..., None, None], 0).sum(1) / (
        coord_mask.sum(-1)[..., None, None] + 1e-8
    )
    affine_from_average = atom3_to_backbone_affine(
        average_per_n_ca_c.float()
    ).as_matrix()

    B, S, _, _ = coords.shape
    assert isinstance(B, int)
    assert isinstance(S, int)
    affine_rot_mats = affine_from_average.rot.tensor[..., None, :].expand(B, S, 9)
    affine_trans = affine_from_average.trans[..., None, :].expand(B, S, 3)

    # We use the identity rotation whereever we have no coordinates. This is
    # important because otherwise the rotation matrices will be all zeros, which
    # will cause collapse in the distance/direction attention mechanism.
    identity_rot = RotationMatrix.identity(
        (B, S), dtype=torch.float32, device=coords.device, requires_grad=False
    )
    affine_rot_mats = affine_rot_mats.where(
        coord_mask.any(-1)[..., None, None], identity_rot.tensor
    )
    black_hole_affine = Affine3D(affine_trans, RotationMatrix(affine_rot_mats))

    affine = atom3_to_backbone_affine(coords.float())
    affine = Affine3D.from_tensor(
        affine.tensor.where(coord_mask[..., None], black_hole_affine.tensor)
    )

    return affine, coord_mask