File size: 10,338 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import copy
import gradio as gr
from gradio_molecule3d import Molecule3D
import Bio
import Bio.SeqUtils

from utils.util_functions import merge_ranges
from predict import model_predict
from constants import *


def update_reps_based_on_radio(*args):
    struct, text = args[0], args[1]
    background, model, active_sites = args[2:4], args[4], args[5:]

    predicted_sites, confs, sequence = model_predict(model, struct, text)
    merged_sites = merge_ranges(predicted_sites, max_value=len(sequence))

    confidence_details = []
    new_reps = []

    # 1. cal summary
    summary_text = []
    for k, v in predicted_sites.items():
        if len(v) > 0:
            summary_text.append(f"{len(v)} {no_cat_dict[k]} site(s)")
    if len(summary_text) == 0:
        summary_text = ["No active sites identified."]
    summary_text = '; '.join(summary_text)

    # 2. cal dataframe
    detail_predicted_sites = {'b':[], '0':[], '1':[], '2':[], '3':[], '4':[], '5':[]}
    ass = []
    for k, v in predicted_sites.items():
        for vv in v:
            detail_predicted_sites[k].append(
                {'residue_type': sequence[vv-1], 'number': vv, 'confidence': confs[vv-1]}
            )
            ass.append(vv)
    for i in range(len(sequence)):
        if i+1 not in ass:
            detail_predicted_sites['b'].append(
                {'residue_type': sequence[i], 'number': i+1, 'confidence': confs[i]}
            )
    # 2.1 处理背景
    backgrounds = detail_predicted_sites.get('b', [])
    for r in backgrounds:
        confidence_details.append([
            'Background',
            Bio.SeqUtils.seq3(r['residue_type']).upper(),
            r['number'],
            r.get('confidence', 'N/A')
        ])
    # 2.2 处理活性位点
    for i in range(0, len(active_sites), 2):
        x, y = active_sites[i], active_sites[i+1]
        site_key = str(i//2)
        sites = detail_predicted_sites.get(site_key, [])
        for s in sites:
            confidence_details.append([
                no_cat_dict[site_key],
                Bio.SeqUtils.seq3(s['residue_type']).upper(),
                s['number'],
                s.get('confidence', 'N/A')
            ])

    # 3. cal reps
    # 3.1 background
    ranges = merged_sites['b']
    for r in ranges:
        old_reps = copy.deepcopy(default_reps)[0]
        old_reps['style'] = background[0][0].lower() + background[0][1:]
        old_reps['color'] = background[1][0].lower() + background[1][1:] + "Carbon"
        old_reps['residue_range'] = r
        new_reps.append(old_reps)
    # 3.2 active sites
    for i in range(0, len(active_sites), 2):
        x, y = active_sites[i], active_sites[i+1]
        ranges = merged_sites[str(i//2)]
        for r in ranges:
            old_reps = copy.deepcopy(default_reps)[0]
            old_reps['style'] = x[0].lower() + x[1:]
            old_reps['color'] = y[0].lower() + y[1:] + "Carbon"
            old_reps['residue_range'] = r
            new_reps.append(old_reps)

    return summary_text, confidence_details, Molecule3D(label="Identified Functional Sites", reps=new_reps)

def disable_fn(*x):
    return [gr.update(interactive=False)] * len(x)

def able_tip():
    return gr.update(visible=True)

def check_input(input):
    if input is not None:
        return gr.update(interactive=True)
    return gr.update(interactive=False)


with gr.Blocks(title="M3Site-app", theme=gr.themes.Default()) as demo:
    gr.Markdown("# M<sup>3</sup>Site: Leveraging Multi-Class Multi-Modal Learning for Accurate Protein Active Site Identification and Classification")
    gr.Markdown("""
    ## Overview
    **M<sup>3</sup>Site** is an advanced tool designed to accurately identify and classify protein active sites using a multi-modal learning approach. By integrating protein sequences, structural data, and functional annotations, M<sup>3</sup>Site provides comprehensive insights into protein functionality, aiding in drug design, synthetic biology, and understanding protein mechanisms.
    """)
    gr.Markdown("""
    ## How to Use
    1. **Select the Model**: Choose the pre-trained model for site prediction from the dropdown list.
    2. **Adjust Visual Settings**: Customize the visual style and color for background and active sites.
    3. **Upload Protein Structure**: Provide the 3D structure of the protein. You can upload from local or download from PDB Assym. Unit, PDB BioAssembly, AlphaFold DB, or ESMFold DB.
    4. **Enter Function Prompt**: Optionally provide a text description of the protein's function. If unsure, leave it blank.
    5. **Click "Predict"**: Hit the 'Predict' button to initiate the prediction. The predicted active sites will be highlighted in the structure visualization.
    6. **View Results**: The detailed results will be displayed below, including the identified active sites, their types, and confidence scores.
    """)

    with gr.Accordion("General Settings (Set before prediction)"):
        with gr.Row():
            model_drop = gr.Dropdown(model_list, label="Model Selection", value=model_list[0])
            gr.Markdown("")
            gr.Markdown("")
        with gr.Row():
            with gr.Row():
                style_dropb = gr.Dropdown(style_list, label="Style (Background)", value=style_list[0], min_width=1)
                color_dropb = gr.Dropdown(color_list, label="Color (Background)", value=color_list[0], min_width=1)
            with gr.Row():
                style_drop1 = gr.Dropdown(style_list, label="Style (CRI)", value=style_list[1], min_width=1)
                color_drop1 = gr.Dropdown(color_list, label="Color (CRI)", value=color_list[1], min_width=1)
            with gr.Row():
                style_drop2 = gr.Dropdown(style_list, label="Style (SCI)", value=style_list[1], min_width=1)
                color_drop2 = gr.Dropdown(color_list, label="Color (SCI)", value=color_list[2], min_width=1)
            with gr.Row():
                style_drop3 = gr.Dropdown(style_list, label="Style (PI)", value=style_list[1], min_width=1)
                color_drop3 = gr.Dropdown(color_list, label="Color (PI)", value=color_list[3], min_width=1)
        with gr.Row():
            with gr.Row():
                style_drop4 = gr.Dropdown(style_list, label="Style (PTCR)", value=style_list[1], min_width=1)
                color_drop4 = gr.Dropdown(color_list, label="Color (PTCR)", value=color_list[4], min_width=1)
            with gr.Row():
                style_drop5 = gr.Dropdown(style_list, label="Style (IA)", value=style_list[1], min_width=1)
                color_drop5 = gr.Dropdown(color_list, label="Color (IA)", value=color_list[5], min_width=1)
            with gr.Row():
                style_drop6 = gr.Dropdown(style_list, label="Style (SSA)", value=style_list[1], min_width=1)
                color_drop6 = gr.Dropdown(color_list, label="Color (SSA)", value=color_list[6], min_width=1)
            with gr.Row():
                gr.Markdown("")

        gr.Markdown('''
            *NOTE:* CRI indicates Covalent Reaction Intermediates, SCI indicates Sulfur-containing Covalent Intermediates, PI indicates Phosphorylated Intermediates, 
            PTCR indicates Proton Transfer & Charge Relay Systems, IA indicates Isomerization Activity, SSA indicates Substrate-specific Activities.
            ''')

    with gr.Row():
        gr.Markdown("<center><font size=5><b>Input Structure</b></font></center>")
        gr.Markdown("<center><font size=5><b>Output Predictions</b></font></center>")

    with gr.Row(equal_height=True):
        input_struct = Molecule3D(label="Input Protein Structure (Default Style)", reps=reps1)
        output_struct = Molecule3D(label="Output Protein Structure", reps=[])

    with gr.Row(equal_height=True):
        input_text = gr.Textbox(lines=1, label="Function Prompt", scale=16, min_width=1, placeholder="I don't know the function of this protein.")
        btn = gr.Button("Predict", variant="primary", scale=1, min_width=1, interactive=False)
        summary_output = gr.Label(label="", scale=18, min_width=1, show_label=False, elem_classes="info")

    gr.Markdown("### Result Details")
    confidence_output = gr.DataFrame(headers=["Active Site Type", "Residue Type", "Residue Number", "Confidence"])

    option_list = [
        style_dropb, color_dropb, model_drop, 
        style_drop1, color_drop1, 
        style_drop2, color_drop2, 
        style_drop3, color_drop3, 
        style_drop4, color_drop4, 
        style_drop5, color_drop5, 
        style_drop6, color_drop6
    ]

    tips = gr.Markdown("### *Tips: Please refresh the page to make a new prediction.*", visible=False)
    # gr.Markdown("## Citation")
    # gr.Markdown("If you find this tool helpful, please consider citing the following papers:")
    # with gr.Accordion("Citations", open=False):
    #     gr.Markdown('''```
    #                 @inproceedings{ouyangmmsite,
    #                     title={MMSite: A Multi-modal Framework for the Identification of Active Sites in Proteins},
    #                     author={Ouyang, Song and Cai, Huiyu and Luo, Yong and Su, Kehua and Zhang, Lefei and Du, Bo},
    #                     booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems}
    #                 }
    #                 @article{ouyangm3site,
    #                     title={M3Site: Leveraging Multi-Class Multi-Modal Learning for Accurate Protein Active Site Iden-tification and Classification},
    #                     author={Ouyang, Song and Luo, Yong and Su, Kehua and Zhang, Lefei and Du, Bo},
    #                     journal={xxxx},
    #                     year={xxxx},
    #                 }
    #                 ```''')
    
    # 绑定事件
    input_struct.change(check_input, inputs=input_struct, outputs=btn)
    btn.click(
        fn=able_tip, 
        inputs=[], 
        outputs=tips
    ).then(
        fn=disable_fn, 
        inputs=option_list, 
        outputs=option_list
    ).then(
        fn=update_reps_based_on_radio, 
        inputs=[input_struct, input_text] + option_list, 
        outputs=[summary_output, confidence_output, output_struct]
    ).then(
        fn=lambda x: x, 
        inputs=[input_struct], 
        outputs=[output_struct]
    )


if __name__ == "__main__":
    demo.launch(share=True, debug=True)