anonymous8
commited on
Commit
·
944cd2a
1
Parent(s):
6c28a7e
update
Browse files
app.py
CHANGED
@@ -21,8 +21,6 @@ from textattack.attack_recipes import (
|
|
21 |
from textattack.attack_results import SuccessfulAttackResult
|
22 |
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
|
23 |
|
24 |
-
nltk.download("omw-1.4")
|
25 |
-
|
26 |
sent_attackers = {}
|
27 |
tad_classifiers = {}
|
28 |
|
@@ -41,6 +39,8 @@ app = Flask(__name__)
|
|
41 |
|
42 |
|
43 |
def init():
|
|
|
|
|
44 |
if not os.path.exists("TAD-SST2"):
|
45 |
z = zipfile.ZipFile("checkpoints.zip", "r")
|
46 |
z.extractall(os.getcwd())
|
@@ -146,7 +146,6 @@ def generate_adversarial_example(dataset, attacker, text=None, label=None):
|
|
146 |
|
147 |
|
148 |
def run_demo(dataset, attacker, text=None, label=None):
|
149 |
-
|
150 |
try:
|
151 |
data = {
|
152 |
"dataset": dataset,
|
@@ -174,21 +173,31 @@ def run_demo(dataset, attacker, text=None, label=None):
|
|
174 |
print(e)
|
175 |
return generate_adversarial_example(dataset, attacker, text, label)
|
176 |
|
177 |
-
if __name__ == "__main__":
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
init()
|
180 |
|
181 |
demo = gr.Blocks()
|
182 |
|
183 |
with demo:
|
184 |
gr.Markdown("<h1 align='center'>Reactive Perturbation Defocusing for Textual Adversarial Defense</h1>")
|
185 |
-
gr.Markdown("<h3 align='center'>Clarifications</h2>")
|
186 |
gr.Markdown("""
|
187 |
-
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by
|
188 |
-
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations.
|
189 |
-
- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense.
|
190 |
-
- The DeepWordBug is an unknown attacker to the adversarial detector and reactive defense module. DeepWordBug has different attacking patterns from other attackers and shows the generalizability and robustness of
|
191 |
-
- To help the review & evaluation of
|
192 |
""")
|
193 |
gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
|
194 |
with gr.Group():
|
@@ -207,16 +216,32 @@ if __name__ == "__main__":
|
|
207 |
with gr.Row():
|
208 |
input_sentence = gr.Textbox(
|
209 |
placeholder="Input a natural example...",
|
210 |
-
label="Alternatively, input a natural example and its original label to generate an adversarial example.",
|
211 |
)
|
212 |
input_label = gr.Textbox(
|
213 |
-
placeholder="Original label...", label="Original Label"
|
214 |
)
|
215 |
|
216 |
button_gen = gr.Button(
|
217 |
-
"Generate an adversarial example to repair using
|
218 |
variant="primary",
|
219 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")
|
222 |
|
@@ -230,14 +255,14 @@ if __name__ == "__main__":
|
|
230 |
output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
|
231 |
with gr.Row():
|
232 |
output_repaired_example = gr.Textbox(
|
233 |
-
label="Repaired Adversarial Example by
|
234 |
)
|
235 |
output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")
|
236 |
|
237 |
gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
|
238 |
gr.Markdown("""
|
239 |
-
|
240 |
-
|
241 |
ori_text_diff = gr.HighlightedText(
|
242 |
label="The Original Natural Example",
|
243 |
combine_adjacent=True,
|
@@ -271,7 +296,7 @@ if __name__ == "__main__":
|
|
271 |
label="Repaired Standard Classification Result"
|
272 |
)
|
273 |
gr.Markdown(
|
274 |
-
"If is_repaired=true, it has been repaired by
|
275 |
"The pred_label field indicates the standard classification result. "
|
276 |
"The confidence field represents the confidence of the predicted label. "
|
277 |
"The is_correct field indicates whether the predicted label is correct."
|
@@ -297,4 +322,3 @@ if __name__ == "__main__":
|
|
297 |
)
|
298 |
|
299 |
demo.queue(2).launch()
|
300 |
-
|
|
|
21 |
from textattack.attack_results import SuccessfulAttackResult
|
22 |
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
|
23 |
|
|
|
|
|
24 |
sent_attackers = {}
|
25 |
tad_classifiers = {}
|
26 |
|
|
|
39 |
|
40 |
|
41 |
def init():
|
42 |
+
nltk.download("omw-1.4")
|
43 |
+
|
44 |
if not os.path.exists("TAD-SST2"):
|
45 |
z = zipfile.ZipFile("checkpoints.zip", "r")
|
46 |
z.extractall(os.getcwd())
|
|
|
146 |
|
147 |
|
148 |
def run_demo(dataset, attacker, text=None, label=None):
|
|
|
149 |
try:
|
150 |
data = {
|
151 |
"dataset": dataset,
|
|
|
173 |
print(e)
|
174 |
return generate_adversarial_example(dataset, attacker, text, label)
|
175 |
|
|
|
176 |
|
177 |
+
def check_gpu():
|
178 |
+
try:
|
179 |
+
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', timeout=3)
|
180 |
+
if response.status_code < 500:
|
181 |
+
return 'GPU available'
|
182 |
+
else:
|
183 |
+
return 'GPU not available'
|
184 |
+
except Exception as e:
|
185 |
+
return 'GPU not available'
|
186 |
+
|
187 |
+
|
188 |
+
if __name__ == "__main__":
|
189 |
init()
|
190 |
|
191 |
demo = gr.Blocks()
|
192 |
|
193 |
with demo:
|
194 |
gr.Markdown("<h1 align='center'>Reactive Perturbation Defocusing for Textual Adversarial Defense</h1>")
|
|
|
195 |
gr.Markdown("""
|
196 |
+
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper (approximately up to 97%).
|
197 |
+
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. Rapid does not introduce additional unnatural perturbations.
|
198 |
+
- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense. Rapid significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods.
|
199 |
+
- The DeepWordBug is an unknown attacker to the adversarial detector and reactive defense module. DeepWordBug has different attacking patterns from other attackers and shows the generalizability and robustness of Rapid.
|
200 |
+
- To help the review & evaluation of EMNLP-2023, we will host this demo on a GPU device to speed up the inference process d. Then it will be deployed on a CPU device in the future.
|
201 |
""")
|
202 |
gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
|
203 |
with gr.Group():
|
|
|
216 |
with gr.Row():
|
217 |
input_sentence = gr.Textbox(
|
218 |
placeholder="Input a natural example...",
|
219 |
+
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
|
220 |
)
|
221 |
input_label = gr.Textbox(
|
222 |
+
placeholder="Original label, must be an integer...", label="Original Label"
|
223 |
)
|
224 |
|
225 |
button_gen = gr.Button(
|
226 |
+
"Generate an adversarial example to repair using Rapid (GPU: < 1 minute, CPU: 1-10 minutes)",
|
227 |
variant="primary",
|
228 |
)
|
229 |
+
gpu_status_text = gr.Textbox(
|
230 |
+
label='GPU status',
|
231 |
+
placeholder="Please click to check",
|
232 |
+
)
|
233 |
+
button_check = gr.Button(
|
234 |
+
"Check if GPU available",
|
235 |
+
variant="primary"
|
236 |
+
)
|
237 |
+
|
238 |
+
button_check.click(
|
239 |
+
fn=check_gpu,
|
240 |
+
inputs=[],
|
241 |
+
outputs=[
|
242 |
+
gpu_status_text
|
243 |
+
]
|
244 |
+
)
|
245 |
|
246 |
gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")
|
247 |
|
|
|
255 |
output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
|
256 |
with gr.Row():
|
257 |
output_repaired_example = gr.Textbox(
|
258 |
+
label="Repaired Adversarial Example by Rapid"
|
259 |
)
|
260 |
output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")
|
261 |
|
262 |
gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
|
263 |
gr.Markdown("""
|
264 |
+
<p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
|
265 |
+
""")
|
266 |
ori_text_diff = gr.HighlightedText(
|
267 |
label="The Original Natural Example",
|
268 |
combine_adjacent=True,
|
|
|
296 |
label="Repaired Standard Classification Result"
|
297 |
)
|
298 |
gr.Markdown(
|
299 |
+
"If is_repaired=true, it has been repaired by Rapid. "
|
300 |
"The pred_label field indicates the standard classification result. "
|
301 |
"The confidence field represents the confidence of the predicted label. "
|
302 |
"The is_correct field indicates whether the predicted label is correct."
|
|
|
322 |
)
|
323 |
|
324 |
demo.queue(2).launch()
|
|