|
from anonymous_demo import TADCheckpointManager |
|
|
|
from textattack.model_args import DEMO_MODELS |
|
from textattack.reactive_defense.reactive_defender import ReactiveDefender |
|
|
|
|
|
class TADReactiveDefender(ReactiveDefender): |
|
""" Transformers sentiment analysis pipeline returns a list of responses |
|
like |
|
|
|
[{'label': 'POSITIVE', 'score': 0.7817379832267761}] |
|
|
|
We need to convert that to a format TextAttack understands, like |
|
|
|
[[0.218262017, 0.7817379832267761] |
|
""" |
|
|
|
def __init__(self, ckpt='tad-sst2', **kwargs): |
|
super().__init__(**kwargs) |
|
self.tad_classifier = TADCheckpointManager.get_tad_text_classifier(checkpoint=DEMO_MODELS[ckpt], |
|
auto_device=True) |
|
|
|
def reactive_defense(self, text, **kwargs): |
|
res = self.tad_classifier.infer(text, defense='pwws', print_result=False, **kwargs) |
|
return res |
|
|